Exercises, II.

Maciej Zakarczemny

Exercise 1. Define $N: \mathbb{Z}[i] \to \mathbb{Z}$ by $N(a+bi) = a^2 + b^2$.

Verify that for all $\alpha, \beta \in \mathbb{Z}[i]$, $N(\alpha\beta) = N(\alpha)N(\beta)$, either by direct computation or by using the fact that N(a+bi) = (a+bi)(a-bi). Conclude that if $\alpha|\gamma$ in $\mathbb{Z}[i]$, then $N(\alpha)|N(\gamma)$ in \mathbb{Z} .

Proof. Let $\alpha = a + bi$, $\beta = c + di$ we have:

$$N(\alpha\beta) = N((a+bi)(c+di)) = N(ac-bd+(ad+bc)i) = (ac-bd+(ad+bc)i)(ac-bd-(ad+bc)i) =$$
$$= (a+bi)(c+di)(a-bi)(c-di) = N(\alpha)N(\beta).$$

If $\alpha | \gamma$ in $\mathbb{Z}[i]$ then there exists $\beta \in \mathbb{Z}[i]$ such that

$$\alpha\beta = \gamma$$
,

thus by above

$$N(\alpha)N(\beta) = N(\gamma),$$

since $\alpha, \beta, \gamma \in \mathbb{Z}[i]$ we get $N(\alpha), N(\beta), N(\gamma) \in \mathbb{Z}$ and $N(\alpha)|N(\gamma)$ in \mathbb{Z} . \square

Exercise 2. Let $\alpha \in \mathbb{Z}[i]$. Show that α is a unit iff $N(\alpha) = 1$. Conclude that the only units are ± 1 and $\pm i$.

Proof. Let $\alpha = a + bi$. If $\alpha | 1$ in $\mathbb{Z}[i]$ then there exists $\beta \in \mathbb{Z}[i]$ such that

$$\alpha\beta = 1$$
,

thus

$$N(\alpha)N(\beta) = N(1) = 1$$
,

since $\alpha, \beta \in \mathbb{Z}[i]$ we get $N(\alpha), N(\beta) \in \mathbb{Z}$ and $N(\alpha)|1$ in \mathbb{Z} . Therefore

$$a^2 + b^2 = N(\alpha) = \pm 1$$

Hence

$$(a,b) \in \{(1,0),\, (-1,0),\, (0,1),\, (0,-1)\},$$

thus

$$\alpha \in \{1, -1, i, -i\}.$$

On the other hand we have

$$1 \cdot 1 = 1, (-1) \cdot (-1) = 1, i \cdot (-i) = 1.$$

Hence α is a unit iff $N(\alpha) = 1$.

Exercise 3. Let $\alpha \in \mathbb{Z}[i]$. Show that if $N(\alpha)$ is a prime in \mathbb{Z} then α is irreducible in $\mathbb{Z}[i]$. Show that the same conclusion holds if $N(\alpha) = p^2$, where p is a prime in \mathbb{Z} , $p \equiv 3 \pmod{4}$.

Proof. If $\alpha = \beta \gamma$ in $\mathbb{Z}[i]$ then $N(\alpha) = N(\beta)N(\gamma)$.

Since $N(\alpha)$ is a prime in \mathbb{Z} and $N(\beta)$, $N(\gamma)$ are nonnegative we obtain $N(\beta) = 1$ or $N(\gamma) = 1$.

Assume that $N(\gamma) = 1$ then γ is equal ± 1 or $\pm i$ hence γ is a unit in $\mathbb{Z}[i]$.

Analogously, if $N(\beta) = 1$ then β is a unit in $\mathbb{Z}[i]$.

We have shown that if $\alpha = \beta \gamma$ then β or γ is a unit in $\mathbb{Z}[i]$.

Therefore α is irreducible in $\mathbb{Z}[i]$.

Now we assume that $N(\alpha) = p^2$.

If $\alpha = \beta \gamma$ in $\mathbb{Z}[i]$ then $N(\alpha) = N(\beta)N(\gamma)$.

We denote $\beta = c + di$ and get $N(\beta) = c^2 + d^2 \not\equiv 3 \pmod{4}$ thus $N(\beta) \not\equiv p$, analogously $N(\gamma) \not\equiv p$.

Since $p^2 = N(\beta)N(\gamma)$ we obtain $N(\beta) = 1$ or $N(\gamma) = 1$ and proceeding as above, we show that α is irreducible.

Exercise 4. Show that 1-i is irreducible in $\mathbb{Z}[i]$ and that $2=u(1-i)^2$ for some unit u.

Proof. Since $N(1-i)=1^2+(-1)^2=2$ is a prime number in \mathbb{Z} by Exercise 3, we get that 1-i is irreducible in $\mathbb{Z}[i]$.

We have $i(1-i)^2 = i(1^2 - 2i + i^2) = i(-2i) = 2$ hence we may take u = i. Since i(-i) = 1 we obtain that u is a unit in $\mathbb{Z}[i]$.

Note that $2 = i(1-i)^2$ is a complete factorization of 2 in $\mathbb{Z}[i]$.

In polish:

Pokaż, że 1-i jest nieprzywiedlne (niektórzy piszą nierozkładalne) w $\mathbb{Z}[i]$ oraz, że $2=u(1-i)^2$ dla pewnej jedności u.

 $Dow \acute{o}d$: Ponieważ $N(1-i)=1^2+(-1)^2=2$ jest całkowitą liczbą pierwszą, zatem na podstawie Zadania 3, dostajemy, że 1-i jest nieprzewiedlne w $\mathbb{Z}[i]$. Mamy $i(1-i)^2=i(1^2-2i+i^2)=i(-2i)=2$, wobec tego możemy wziąć u=i. Skoro i(-i)=1, zatem u to jedność w $\mathbb{Z}[i]$.

Zauważmy, że $2 = i(1-i)^2$ to kompletny rozkład 2 w $\mathbb{Z}[i]$.

Exercise 5. Notice that (2+i)(2-i) = 5 = (1+2i)(1-2i). How is this consistent with unique factorization?

Proof. $\mathbb{Z}[i]$ is a unique factorization domain: every nonzero Gaussian integer can be expressed in a unique way (up to order and unit factors) as a product of Gaussian primes.

Since i is a unit in $\mathbb{Z}[i]$ and

$$(2+i) = i(1-2i), (2-i) = (-i)(1+2i)$$

equation

$$(2+i)(2-i) = 5 = (1+2i)(1-2i)$$

gives the same factorization of 5 up to order and unit factors.

Exercise 6. Show that every nonzero, non-unit Gaussian integer α is a product of irreducible elements, by induction on $N(\alpha)$.

Proof. If $N(\alpha) = 1$ then by exercise 2, α is a unit.

Hence we may assume, that $N(\alpha) > 1$.

If $N(\alpha) = 2$ then by exercise 3 number α is irreducible in $\mathbb{Z}[i]$.

Let s > 2 be an integer.

We will proceed by induction on s.

Assume that every nonzero, non-unit $\alpha \in \mathbb{Z}[i]$ such that $N(\alpha) < s$ is a product of irreducible elements.

Let α be any element of $\mathbb{Z}[i]$ such that $N(\alpha) = s$.

If α is irreducible in $\mathbb{Z}[i]$ then α is a product of irreducible elements (product of one irreducible element namely α).

If α is reducible then $\alpha = \beta \gamma$ where $\beta, \gamma \in \mathbb{Z}[i]$ are not units.

By exercise 2 we get $N(\beta)$, $N(\gamma) > 1$, hence $N(\beta)$, $N(\gamma) < s$.

By inductive assumption β and γ are products of irreducible elements.

Therefore $\alpha = \beta \gamma$ is a product of irreducible elements.

Thus every nonzero, non-unit $\alpha \in \mathbb{Z}[i]$ such that $N(\alpha) < s+1$ is a product of irreducible elements.

Therefore every nonzero, non-unit Gaussian integer α is a product of irreducible elements.

Exercise 7. Show that $\mathbb{Z}[i]$ is a principal ideal domain (PID), i.e., every ideal I is principal.

Proof. A subset I is called an ideal of $\mathbb{Z}[i]$ if it satisfies the following two conditions:

- 1. I is an additive subgroup of $\mathbb{Z}[i]$, i.e. $\forall_{\alpha,\beta\in I} \ \alpha-\beta\in I$,
- 2. $\forall_{\alpha \in I} \forall_{\gamma \in \mathbb{Z}[i]} \ \gamma \alpha \in I$.

A principal ideal is an ideal I in a ring $\mathbb{Z}[i]$ that is generated by a single element a of $\mathbb{Z}[i]$. The principal ideal generated by $\alpha \in \mathbb{Z}[i]$ can be expressed in the form $I = \{\gamma\alpha : \gamma \in \mathbb{Z}[i]\}$. We take $\alpha \in I - \{0\}$ such that $N(\alpha) \in \mathbb{Z}_+$ is minimized, and consider the multiplies $\gamma\alpha$, $\gamma \in \mathbb{Z}[i]$.

These are the vertices of a lattice Λ which divide the whole of complex plane into congruent squares, copies of an 2-dimensional fundamental square with vertices 0, α , $i\alpha$, $(1+i)\alpha$.

We have

$$\Lambda = \{v_1 \alpha + v_2 i \alpha, v_1, v_2 \in \mathbb{Z}\} = \{\gamma \alpha, \gamma \in \mathbb{Z}[i]\} \subset I.$$

We take arbitrary $\beta \in I$.

The fundamental square K of the lattice $\beta + \Lambda$ is a translation of the fundamental square of the lattice Λ . Sides of square K have length equal $N(\alpha)$. We may assume that the origin of coordinate system is in interior or on boundary of the square ABCD, where A, B, C, D are vertices of $\beta + \Lambda$ and square ABCD is a translation of K.

Diagonals divide square ABCD into four congruent triangles with diameters equal $N(\alpha)$. Therefore the distance between origin and the nearest from vertices A, B, C, D, say A, is smaller then $N(\alpha)$.

Thus $N(A) < N(\alpha)$. Since $A \in \beta + \Lambda \subset I$ by definition of α we obtain A = 0. Hence $0 \in \beta + \Lambda$. Therefore $\beta \in \Lambda$ and

$$I = \Lambda = \{ \gamma \alpha, \gamma \in \mathbb{Z}[i] \}.$$

Thus ideal I is principal and $\mathbb{Z}[i]$ is a principal ideal domain.

Exercise 8. We will use unique factorization in $\mathbb{Z}[i]$ to prove that every prime $p \equiv 1 \pmod{4}$ is a sum of two squares.

- (a) Use the fact that the multiplicative group \mathbb{Z}_p^* of integer $\mod p$ is cyclic to show that if $p \equiv 1 \pmod{4}$ then $n^2 \equiv -1 \pmod{p}$ for some $n \in \mathbb{Z}$.
- (b) Prove that p cannot be irreducible in $\mathbb{Z}[i]$. (Hint: $p|n^2 + 1 = (n+i)(n-i)$.)
- (c) Prove that p is a sum of two squares. (Hint: (b) shows that p = (a + bi)(c + di) with neither factor a unit. Take norms.)

Proof. Let g be a generator of the cyclic group \mathbb{Z}_p^* , we have $g^{p-1}=1$.

Hence $(g^{\frac{p-1}{4}})^4 = 1$ in \mathbb{Z}_p^* (note that $p \equiv 1 \pmod{4}$). We take $n = g^{\frac{p-1}{4}}$ in \mathbb{Z} and obtain $n^2 \equiv -1 \pmod{p}$.

Since $p|n^2 + 1$ we get p|(n+i)(n-i) in $\mathbb{Z}[i]$.

If p is irreducible in $\mathbb{Z}[i]$ then p|n+i and also p|n-i.

Thus p|2i and $p^2|4$ but $p \equiv 1 \pmod{4}$ and we get contradiction.

Therefore p is reducible in $\mathbb{Z}[i]$.

We take p = (a + bi)(c + di), $a, b, c, d \in \mathbb{Z}$ where neither factor is a unit.

Hence $p^2 = (a^2 + b^2)(c^2 + d^2)$ where $a^2 + b^2$, $c^2 + d^2 \neq 1$.

Thus $p = a^2 + b^2$, $a, b \in \mathbb{Z}$.

Exercise 9. Describe all irreducible elements in $\mathbb{Z}[i]$.

Proof. Non-unit, non-zero element in $\mathbb{Z}[i]$, is said to be irreducible if it is not a product of two non-units. Assume that α is irreducible in $\mathbb{Z}[i]$.

Let $\alpha \bar{\alpha} = N(\alpha) = p_1^{k_1} p_2^{k_2} \cdot \ldots \cdot p_n^{k_n}$ is a decomposition of $N(\alpha)$ in \mathbb{Z} .

Hence $\alpha | p_1^{k_1} p_2^{k_2} \cdot \ldots \cdot p_n^{k_n}$.

Since α is irreducible in $\mathbb{Z}[i]$ (and hence $\bar{\alpha}$ also) we may assume, that $\alpha, \bar{\alpha}|p_1$. Therefore $N(\alpha)|p_1^2$. If $N(\alpha) = 1$ then α is a unit, contradiction.

If $N(\alpha) = p_1$ then α is irreducible, (if α is a product of two non-units, then $N(\alpha)$ is a product of two natural numbers neither equal to one).

If $\alpha \bar{\alpha} = N(\alpha) = p_1^2$ then $\alpha = up_1$, $\bar{\alpha} = u^{-1}p_1$, where u is a unit in $\mathbb{Z}[i]$ (note that $\alpha, \bar{\alpha}|p_1$).

Assume that $p_1 = (a+bi)(c+di)$ where $a,b,c,d \in \mathbb{Z}$ hence

 $ac - bd = p_1, \ ad = -bc, (a, b) = (c, d) = 1.$

Therefore a = c, b = -d and $p_1 = a^2 + b^2$. We obtain $p_1 \equiv 1 \pmod{4}$.

On the other hand if $p_1 \equiv 1 \pmod{4}$ then by Exercise 8 we may find $a, b \in \mathbb{Z}$ such that $p_1 = a^2 + b^2 = (a + bi)(a - bi)$, where neither factor is a unit $(N(a+bi) = N(a-bi) = a^2 + b^2 = p_1 > 1)$. Hence $\alpha = u(a+bi)(a-bi)$. Therefore element α in $\mathbb{Z}[i]$ is irreducible if $N(\alpha)$ is a prime number in \mathbb{Z} or

 α is a prime number in $\mathbb Z$ which is congruent to 3 modulo 4.

Exercise 10. Let $\omega = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. Define $N: \mathbb{Z}[\omega] \to \mathbb{Z}$ by $N(a+b\omega) = a^2 - ab + b^2.$

Show that if $a + b\omega$ is written in the form u + vi, where u and v are real, then $N(a + b\omega) = u^2 + v^2$.

Proof. We have $a+b\omega=a-\frac{1}{2}b+\frac{\sqrt{3}}{2}bi=u+vi$, hence

$$N(u+vi) = N(a - \frac{1}{2}b + \frac{\sqrt{3}}{2}bi) = N(a+b\omega) = a^2 - ab + b^2 = (a - \frac{1}{2}b)^2 + (\frac{\sqrt{3}}{2}b)^2 = u^2 + v^2.$$

Exercise 11. Show that for all $\alpha, \beta \in \mathbb{Z}[\omega]$, $N(\alpha\beta) = N(\alpha)N(\beta)$, either by direct computation or by using exercise 10. Conclude that if $\alpha|\gamma$ in $\mathbb{Z}[\omega]$, then $N(\alpha)|N(\gamma)$ in \mathbb{Z} .

Proof. Let $\alpha = a + b\omega = u_{\alpha} + v_{\alpha}i$, $\beta = c + d\omega = u_{\beta} + v_{\beta}i$, then $\alpha\beta = (u_{\alpha} + v_{\alpha}i)(u_{\beta} + v_{\beta}i) = (u_{\alpha}u_{\beta} - v_{\alpha}v_{\beta}) + (u_{\alpha}v_{\beta} + u_{\beta}v_{\alpha})i.$

Whence

$$N(\alpha\beta) = (u_{\alpha}u_{\beta} - v_{\alpha}v_{\beta})^{2} + (u_{\alpha}v_{\beta} + u_{\beta}v_{\alpha})^{2} = (u_{\alpha}^{2} + v_{\alpha}^{2})(u_{\beta}^{2} + v_{\beta}^{2}) = N(\alpha)N(\beta).$$

If $\alpha | \gamma$ in $\mathbb{Z}[\omega]$ then there exists $\beta \in \mathbb{Z}[\omega]$ such that $\alpha \beta = \gamma$.

Thus $N(\gamma) = N(\alpha\beta) = N(\alpha)N(\beta)$.

Since $N(\beta) \in \mathbb{Z}$ we get $N(\alpha)|N(\gamma)$ in \mathbb{Z} .

Exercise 12. Let $\omega = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. Define $N: \mathbb{Z}[\omega] \to \mathbb{Z}$ by

$$N(a+b\omega) = a^2 - ab + b^2.$$

Let $\alpha \in \mathbb{Z}[\omega]$. Show that α is a unit iff $N(\alpha) = 1$, and find all units in $\mathbb{Z}[\omega]$.

Proof. If α is a unit then $\alpha|1$ in $\mathbb{Z}[\omega]$, by exercise 11 we get that $N(\alpha)|N(1)=1$.

Since $N(\alpha) \geq 0$, $N(\alpha) \in \mathbb{Z}$ we obtain $N(\alpha) = 1$.

On the other hand.

Assume that $\alpha = a + b\omega$ and $N(\alpha) = 1$.

We have $a - b - b\omega \in \mathbb{Z}[\omega]$ and

$$(a+b\omega)(a-b-b\omega) = (a-\tfrac{1}{2}b+\tfrac{\sqrt{3}}{2}bi)(a-\tfrac{1}{2}b-\tfrac{\sqrt{3}}{2}bi) = (a-\tfrac{1}{2}b)^2+\tfrac{3}{4}b^2 = a^2-ab+b^2 = 1.$$

Hence α is a unit.

We will find all units in $\mathbb{Z}[\omega]$.

Let $\alpha = a + b\omega$ is a unit in $\mathbb{Z}[\omega]$.

Therefore $a^2 - ab + b^2 = 1$.

If b = 0 then $a^2 = 1$ and we have units 1, -1.

If a = 0 then $b^2 = 1$ and we have units $\omega, -\omega$.

If $b \neq 0$ then $(a - b)^2 + a^2 + b^2 = 2(a^2 - ab + b^2) = 2$.

Since $b \in \mathbb{Z}$, $b \neq 0$, $(a - b)^2 + a^2 \geq 0$ we have $b^2 = 1$ and $(a - b)^2 + a^2 = 1$.

Since $a \in \mathbb{Z}$, $a \neq 0$, $(a - b)^2 \geq 0$ we have $a^2 = 1$, a = b.

Therefore we have units $1 + \omega$, $-1 - \omega$.

Finally, we have six units $1, -1, \omega, -\omega, 1 + \omega, -1 - \omega$.

Exercise 13. Let $\omega = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. Define $N: \mathbb{Z}[\omega] \to \mathbb{Z}$ by $N(a+b\omega) = a^2 - ab + b^2$.

Show that $1 - \omega$ is irreducible in $\mathbb{Z}[\omega]$, and that $3 = u(1 - \omega)^2$ for some unit u.

Proof. Assume that in $\mathbb{Z}[\omega]$ we have

$$1 - \omega = \alpha \beta$$
.

hence $N(1 - \omega) = N(\alpha)N(\beta)$.

Therefore $3 = N(\alpha)N(\beta)$ and thus $N(\alpha) = 1$ or $N(\beta) = 1$.

By exercise 12 we get α or β is a unit in $\mathbb{Z}[\omega]$.

Hence $1 - \omega$ is irreducible in $\mathbb{Z}[\omega]$.

We have $\omega^2 + \omega + 1 = 0$ hence

$$3 = (1 + \omega)(1 - \omega)^2$$
.

Note that $-\omega(1+\omega)=1$ hence $u=1+\omega$ is a unit in $\mathbb{Z}[\omega]$.

Exercise 14. Modify exercise 7 to show that $\mathbb{Z}[\omega]$ is a principal ideal domain (PID)(i.e., every ideal I is principal), hence a UFD. Here the squares are replaced by parallelograms; one of them has vertices 0, α , $\omega\alpha$, $(\omega + 1)\alpha$ and all others are translates of this one. Use exercise 10 for the geometric argument at the end.

Proof. A subset I is called an ideal of $\mathbb{Z}[\omega]$ if it satisfies the following two conditions:

- 1. I is an additive subgroup of $\mathbb{Z}[\omega]$, i.e. $\forall_{\alpha,\beta\in I} \ \alpha-\beta\in I$,
- $2. \ \forall_{\alpha \in I} \forall_{\gamma \in \mathbb{Z}[\omega]} \ \gamma \alpha \in I.$

A principal ideal is an ideal I in a ring $\mathbb{Z}[\omega]$ that is generated by a single element a of $\mathbb{Z}[\omega]$. The principal ideal generated by $\alpha \in \mathbb{Z}[\omega]$ can be expressed in the form $I = \{\gamma \alpha : \gamma \in \mathbb{Z}[\omega]\}$.

We take $\alpha \in I - \{0\}$ such that $N(\alpha) \in \mathbb{Z}_+$ is minimized, and consider the multiplies $\gamma \alpha, \ \gamma \in \mathbb{Z}[\omega]$.

These are the vertices of a lattice Λ which divide the whole of complex plane into congruent parallelograms, copies of an 2-dimensional fundamental parallelogram with vertices 0, α , $\omega\alpha$, $(1+\omega)\alpha$.

We have

$$\Lambda = \{v_1\alpha + v_2\omega\alpha, v_1, v_2 \in \mathbb{Z}\} = \{\gamma\alpha, \gamma \in \mathbb{Z}[\omega]\} \subset I.$$

We take arbitrary $\beta \in I$.

The fundamental parallelogram K of the lattice $\beta + \Lambda$ is a translation of the fundamental parallelogram of the lattice Λ . Sides of parallelogram K have length equal $N(\alpha)$.

We may assume that the origin of coordinate system is in interior or on boundary of the parallelogram ABCD, where A, B, C, D are vertices of $\beta + \Lambda$ and parallelogram ABCD is a translation of K.

Diagonals divide square ABCD into four congruent triangles with diameters equal $N(\alpha)$. Therefore the distance between origin and the nearest from vertices A, B, C, D, say A, is smaller then $N(\alpha)$.

Thus $N(A) < N(\alpha)$. Since $A \in \beta + \Lambda \subset I$ by definition of α we obtain A = 0. Hence $0 \in \beta + \Lambda$. Therefore $\beta \in \Lambda$ and

$$I = \Lambda = \{ \gamma \alpha, \gamma \in \mathbb{Z}[\omega] \}.$$

Thus ideal I is principal and $\mathbb{Z}[\omega]$ is a principal ideal domain, hence also unique factorization domain (UFD).

Exercise 15. Here is a proof of Farmat's conjecture for n=4: If $x^4 + y^4 = z^4$ has a solution in positive integers, then so does $x^4 + y^4 = w^2$. Let x, y, w be a solution with smallest possible w. Then x^2, y^2, w is a primitive Pythagorean triple. Assuming (without loss of generality) that x is odd, we can write

$$x^2 = m^2 - n^2$$
, $y^2 = 2mn$, $w = m^2 + n^2$

with m and n relatively prime positive integers, not both odd.

(a) Show that

$$x = r^2 - s^2$$
, $n = 2rs$, $m = r^2 + s^2$

with r and s relatively prime positive integers, not both odd. Indeed:

Since $x^2 + n^2 = m^2$ and (m, n) = 1 we get that x, n, m is a primitive Pythagorean triple. We know that x is odd thus

$$x = r^2 - s^2$$
, $n = 2rs$, $m = r^2 + s^2$

with r and s relatively prime positive integers, not both odd.

(b) Show that r, s, and m are pairwise relatively prime. Using $y^2 = 4rsm$, conclude that r, s, and m are all squares. Indeed: Since $m = r^2 + s^2$, (r, s) = 1 we get that r, s, m are pairwise relatively prime.

We have that
$$(\frac{y}{2})^2 = rsm$$
, $(r, s) = (r, m) = (s, m) = 1$ hence

$$r = a^2$$
, $s = b^2$, $m = c^2$

with a, b, c positive integers.

(c) Show that $a^4 + b^4 = c^2$, and that this contradicts minimality of w. Indeed: Since $r^2 + s^2 = m$ we get $a^4 + b^4 = c^2$, and because $c \le c^2 = m \le m^2 < m^2 + n^2 = w$ this contradicts minimality of w.

Exercise 16. Let p be an odd prime, $\omega = e^{\frac{2\pi i}{p}}$. Show that

$$(1-\omega)(1-\omega^2)\cdot\ldots\cdot(1-\omega^{p-1})=p.$$

Note that $1, \omega, \omega^2, \ldots, \omega^{p-1}$ are the p roots of the polynomial $t^p - 1$, hence we have the identity

$$(t-1)(t-\omega)(t-\omega^2)\cdot\ldots\cdot(t-\omega^{p-1})=t^p-1.$$

Thus

$$(t - \omega)(t - \omega^2) \cdot \ldots \cdot (t - \omega^{p-1}) = 1 + t + t^2 + \ldots + t^{p-1}.$$

We take t = 1 and obtain

$$(1-\omega)(1-\omega^2)\cdot\ldots\cdot(1-\omega^{p-1})=p.$$

Exercise 17. Assume that

p is an odd prime in \mathbb{Z} ;

x, y, z have no common integral factor and are not multiples of p;

$$x^p + y^p = z^p$$
;

 ω is the pth root of unity.

Suppose that $\mathbb{Z}[\omega]$ is a UFD (unique factorization domain) and $\pi|x + y\omega$, where π is a prime in $\mathbb{Z}[\omega]$. Show that π does not divide any of the other factors on the left side of equation

$$(x+y)(x+y\omega)(x+y\omega^2)\dots(x+y\omega^{p-1})=z^p,$$

by showing that if it did, then π would divide both z and yp: but z and yp are relatively prime, hence zm + ypn = 1 for some $m, n \in \mathbb{Z}$. How is this a contradiction?

Proof. Since π is a prime in $\mathbb{Z}[\omega]$ unique factorization domain and

$$\pi|(x+y)(x+y\omega)(x+y\omega^2)\dots(x+y^{p-1})=z^p$$

we get $\pi | z$.

If $\pi | x + y\omega^{i_0}$, where $0 \le i_0 \le p-1$, $i_0 \ne 1$ then

$$\pi|(x+y\omega^{i_0}) - (x+y\omega) = y(\omega^{i_0} - \omega) = y\omega^{i_0}(1-\omega^{1-i_0}),$$

 π is not root of unity and $1 - i_0 \neq 0$ thus

$$\pi |y(1-\omega^{1-i_0})|y(1-\omega)(1-\omega^2)\cdot\ldots\cdot(1-\omega^{p-1}) = yp.$$

But z and yp are relatively prime in \mathbb{Z} , hence zm + ypn = 1 for some $m, n \in \mathbb{Z}$. Therefore

$$\pi|zm + ypn = 1$$

which contradict the fact that prime number π is not a root of unity in $\mathbb{Z}[\omega]$.