Exercises, II.

Maciej Zakarczemny

Exercise 1. Define $N: \mathbb{Z}[i] \rightarrow \mathbb{Z}$ by $N(a+b i)=a^{2}+b^{2}$.
Verify that for all $\alpha, \beta \in \mathbb{Z}[i], N(\alpha \beta)=N(\alpha) N(\beta)$, either by direct computation or by using the fact that $N(a+b i)=(a+b i)(a-b i)$.
Conclude that if $\alpha \mid \gamma$ in $\mathbb{Z}[i]$, then $N(\alpha) \mid N(\gamma)$ in \mathbb{Z}.
Proof. Let $\alpha=a+b i, \beta=c+d i$ we have:

$$
\begin{gathered}
N(\alpha \beta)=N((a+b i)(c+d i))=N(a c-b d+(a d+b c) i)=(a c-b d+(a d+b c) i)(a c-b d-(a d+b c) i)= \\
=(a+b i)(c+d i)(a-b i)(c-d i)=N(\alpha) N(\beta) .
\end{gathered}
$$

If $\alpha \mid \gamma$ in $\mathbb{Z}[i]$ then there exists $\beta \in \mathbb{Z}[i]$ such that

$$
\alpha \beta=\gamma
$$

thus by above

$$
N(\alpha) N(\beta)=N(\gamma)
$$

since $\alpha, \beta, \gamma \in \mathbb{Z}[i]$ we get $N(\alpha), N(\beta), N(\gamma) \in \mathbb{Z}$ and $N(\alpha) \mid N(\gamma)$ in \mathbb{Z}.
Exercise 2. Let $\alpha \in \mathbb{Z}[i]$. Show that α is a unit iff $N(\alpha)=1$. Conclude that the only units are ± 1 and $\pm i$.

Proof. Let $\alpha=a+b i$. If $\alpha \mid 1$ in $\mathbb{Z}[i]$ then there exists $\beta \in \mathbb{Z}[i]$ such that

$$
\alpha \beta=1,
$$

thus

$$
N(\alpha) N(\beta)=N(1)=1
$$

since $\alpha, \beta \in \mathbb{Z}[i]$ we get $N(\alpha), N(\beta) \in \mathbb{Z}$ and $N(\alpha) \mid 1$ in \mathbb{Z}. Therefore

$$
a^{2}+b^{2}=N(\alpha)= \pm 1
$$

Hence

$$
(a, b) \in\{(1,0),(-1,0),(0,1),(0,-1)\},
$$

thus

$$
\alpha \in\{1,-1, i,-i\} .
$$

On the other hand we have

$$
1 \cdot 1=1,(-1) \cdot(-1)=1, i \cdot(-i)=1 .
$$

Hence α is a unit iff $N(\alpha)=1$.

Exercise 3. Let $\alpha \in \mathbb{Z}[i]$. Show that if $N(\alpha)$ is a prime in \mathbb{Z} then α is irreducible in $\mathbb{Z}[i]$. Show that the same conclusion holds if $N(\alpha)=p^{2}$, where p is a prime in $\mathbb{Z}, p \equiv 3(\bmod 4)$.

Proof. If $\alpha=\beta \gamma$ in $\mathbb{Z}[i]$ then $N(\alpha)=N(\beta) N(\gamma)$.
Since $N(\alpha)$ is a prime in \mathbb{Z} and $N(\beta), N(\gamma)$ are nonnegative we obtain $N(\beta)=1$ or $N(\gamma)=1$.
Assume that $N(\gamma)=1$ then γ is equal ± 1 or $\pm i$ hence γ is a unit in $\mathbb{Z}[i]$.
Analogously, if $N(\beta)=1$ then β is a unit in $\mathbb{Z}[i]$.
We have shown that if $\alpha=\beta \gamma$ then β or γ is a unit in $\mathbb{Z}[i]$.
Therefore α is irreducible in $\mathbb{Z}[i]$.
Now we assume that $N(\alpha)=p^{2}$.
If $\alpha=\beta \gamma$ in $\mathbb{Z}[i]$ then $N(\alpha)=N(\beta) N(\gamma)$.
We denote $\beta=c+d i$ and get $N(\beta)=c^{2}+d^{2} \not \equiv 3(\bmod 4)$ thus $N(\beta) \neq p$, analogously $N(\gamma) \neq p$.
Since $p^{2}=N(\beta) N(\gamma)$ we obtain $N(\beta)=1$ or $N(\gamma)=1$ and proceeding as above, we show that α is irreducible.

Exercise 4. Show that $1-i$ is irreducible in $\mathbb{Z}[i]$ and that $2=u(1-i)^{2}$ for some unit u.

Proof. Since $N(1-i)=1^{2}+(-1)^{2}=2$ is a prime number in \mathbb{Z} by Exercise 3 , we get that $1-i$ is irreducible in $\mathbb{Z}[i]$.
We have $i(1-i)^{2}=i\left(1^{2}-2 i+i^{2}\right)=i(-2 i)=2$ hence we may take $u=i$.
Since $i(-i)=1$ we obtain that u is a unit in $\mathbb{Z}[i]$.
Note that $2=i(1-i)^{2}$ is a complete factorization of 2 in $\mathbb{Z}[i]$.

In polish:
Pokaż, że $1-i$ jest nieprzywiedlne (niektórzy piszą nierozkładalne) w $\mathbb{Z}[i]$ oraz, że $2=u(1-i)^{2}$ dla pewnej jedności u.

Dowód: Ponieważ $N(1-i)=1^{2}+(-1)^{2}=2$ jest całkowitą liczbą pierwszą, zatem na podstawie Zadania 3, dostajemy, że $1-i$ jest nieprzewiedlne w $\mathbb{Z}[i]$. Mamy $i(1-i)^{2}=i\left(1^{2}-2 i+i^{2}\right)=i(-2 i)=2$, wobec tego możemy wziaḉ $u=i$. Skoro $i(-i)=1$, zatem u to jedność $\mathrm{w} \mathbb{Z}[i]$.
Zauważmy, że $2=i(1-i)^{2}$ to kompletny rozkład $2 \mathrm{w} \mathbb{Z}[i]$.

Exercise 5. Notice that $(2+i)(2-i)=5=(1+2 i)(1-2 i)$. How is this consistent with unique factorization?

Proof. $\mathbb{Z}[i]$ is a unique factorization domain: every nonzero Gaussian integer can be expressed in a unique way (up to order and unit factors) as a product of Gaussian primes.
Since i is a unit in $\mathbb{Z}[i]$ and

$$
(2+i)=i(1-2 i),(2-i)=(-i)(1+2 i)
$$

equation

$$
(2+i)(2-i)=5=(1+2 i)(1-2 i)
$$

gives the same factorization of 5 up to order and unit factors.

Exercise 6. Show that every nonzero, non-unit Gaussian integer α is a product of irreducible elements, by induction on $N(\alpha)$.

Proof. If $N(\alpha)=1$ then by exercise $2, \alpha$ is a unit.
Hence we may assume, that $N(\alpha)>1$.
If $N(\alpha)=2$ then by exercise 3 number α is irreducible in $\mathbb{Z}[i]$.
Let $s>2$ be an integer.
We will proceed by induction on s.
Assume that every nonzero, non-unit $\alpha \in \mathbb{Z}[i]$ such that $N(\alpha)<s$ is a product of irreducible elements.
Let α be any element of $\mathbb{Z}[i]$ such that $N(\alpha)=s$.
If α is irreducible in $\mathbb{Z}[i]$ then α is a product of irreducible elements (product of one irreducible element namely α).
If α is reducible then $\alpha=\beta \gamma$ where $\beta, \gamma \in \mathbb{Z}[i]$ are not units.
By exercise 2 we get $N(\beta), N(\gamma)>1$, hence $N(\beta), N(\gamma)<s$.
By inductive assumption β and γ are products of irreducible elements.
Therefore $\alpha=\beta \gamma$ is a product of irreducible elements.
Thus every nonzero, non-unit $\alpha \in \mathbb{Z}[i]$ such that $N(\alpha)<s+1$ is a product of irreducible elements.
Therefore every nonzero, non-unit Gaussian integer α is a product of irreducible elements.

Exercise 7. Show that $\mathbb{Z}[i]$ is a principal ideal domain (PID), i.e., every ideal I is principal.

Proof. A subset I is called an ideal of $\mathbb{Z}[i]$ if it satisfies the following two conditions:

1. I is an additive subgroup of $\mathbb{Z}[i]$, i.e. $\forall_{\alpha, \beta \in I} \alpha-\beta \in I$,
2. $\forall_{\alpha \in I} \forall_{\gamma \in \mathbb{Z}[i]} \gamma \alpha \in I$.

A principal ideal is an ideal I in a ring $\mathbb{Z}[i]$ that is generated by a single element a of $\mathbb{Z}[i]$. The principal ideal generated by $\alpha \in \mathbb{Z}[i]$ can be expressed in the form $I=\{\gamma \alpha: \gamma \in \mathbb{Z}[i]\}$. We take $\alpha \in I-\{0\}$ such that $N(\alpha) \in \mathbb{Z}_{+}$ is minimized, and consider the multiplies $\gamma \alpha, \gamma \in \mathbb{Z}[i]$.
These are the vertices of a lattice Λ which divide the whole of complex plane into congruent squares, copies of an 2 -dimensional fundamental square with vertices $0, \alpha, i \alpha,(1+i) \alpha$.
We have

$$
\Lambda=\left\{v_{1} \alpha+v_{2} i \alpha, v_{1}, v_{2} \in \mathbb{Z}\right\}=\{\gamma \alpha, \gamma \in \mathbb{Z}[i]\} \subset I
$$

We take arbitrary $\beta \in I$.
The fundamental square K of the lattice $\beta+\Lambda$ is a translation of the fundamental square of the lattice Λ. Sides of square K have length equal $N(\alpha)$.
We may assume that the origin of coordinate system is in interior or on boundary of the square $A B C D$, where A, B, C, D are vertices of $\beta+\Lambda$ and square $A B C D$ is a translation of K.
Diagonals divide square $A B C D$ into four congruent triangles with diameters equal $N(\alpha)$. Therefore the distance between origin and the nearest from vertices A, B, C, D, say A, is smaller then $N(\alpha)$.
Thus $N(A)<N(\alpha)$. Since $A \in \beta+\Lambda \subset I$ by definition of α we obtain $A=0$. Hence $0 \in \beta+\Lambda$. Therefore $\beta \in \Lambda$ and

$$
I=\Lambda=\{\gamma \alpha, \gamma \in \mathbb{Z}[i]\}
$$

Thus ideal I is principal and $\mathbb{Z}[i]$ is a principal ideal domain.

Exercise 8. We will use unique factorization in $\mathbb{Z}[i]$ to prove that every prime $p \equiv 1(\bmod 4)$ is a sum of two squares.
(a) Use the fact that the multiplicative group \mathbb{Z}_{p}^{*} of integer $\bmod p$
is cyclic to show that if $p \equiv 1(\bmod 4)$ then $n^{2} \equiv-1(\bmod p)$ for some $n \in \mathbb{Z}$.
(b) Prove that p cannot be irreducible in $\mathbb{Z}[i]$.
(Hint: $\left.p \mid n^{2}+1=(n+i)(n-i).\right)$
(c) Prove that p is a sum of two squares.(Hint: (b) shows that $p=(a+b i)(c+d i)$ with neither factor a unit. Take norms.)

Proof. Let g be a generator of the cyclic group \mathbb{Z}_{p}^{*}, we have $g^{p-1}=1$.
Hence $\left(g^{\frac{p-1}{4}}\right)^{4}=1$ in $\mathbb{Z}_{p}^{*}($ note that $p \equiv 1(\bmod 4))$.
We take $n=g^{\frac{p-1}{4}}$ in \mathbb{Z} and obtain $n^{2} \equiv-1(\bmod p)$.
Since $p \mid n^{2}+1$ we get $p \mid(n+i)(n-i)$ in $\mathbb{Z}[i]$.
If p is irreducible in $\mathbb{Z}[i]$ then $p \mid n+i$ and also $p \mid n-i$.
Thus $p \mid 2 i$ and $p^{2} \mid 4$ but $p \equiv 1(\bmod 4)$ and we get contradiction.
Therefore p is reducible in $\mathbb{Z}[i]$.
We take $p=(a+b i)(c+d i), a, b, c, d \in \mathbb{Z}$ where neither factor is a unit.
Hence $p^{2}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)$ where $a^{2}+b^{2}, c^{2}+d^{2} \neq 1$.
Thus $p=a^{2}+b^{2}, a, b \in \mathbb{Z}$.

Exercise 9. Describe all irreducible elements in $\mathbb{Z}[i]$.
Proof. Non-unit, non-zero element in $\mathbb{Z}[i]$, is said to be irreducible if it is not a product of two non-units. Assume that α is irreducible in $\mathbb{Z}[i]$.
Let $\alpha \bar{\alpha}=N(\alpha)=p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} \cdot \ldots \cdot p_{n}{ }^{k_{n}}$ is a decomposition of $N(\alpha)$ in \mathbb{Z}.
Hence $\alpha \mid p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} \cdot \ldots \cdot p_{n}{ }^{k_{n}}$.
Since α is irreducible in $\mathbb{Z}[i]$ (and hence $\bar{\alpha}$ also) we may assume, that $\alpha, \bar{\alpha} \mid p_{1}$.
Therefore $N(\alpha) \mid p_{1}^{2}$. If $N(\alpha)=1$ then α is a unit, contradiction.
If $N(\alpha)=p_{1}$ then α is irreducible, (if α is a product of two non-units, then $N(\alpha)$ is a product of two natural numbers neither equal to one).
If $\alpha \bar{\alpha}=N(\alpha)=p_{1}^{2}$ then $\alpha=u p_{1}, \bar{\alpha}=u^{-1} p_{1}$, where u is a unit in $\mathbb{Z}[i]$ (note that $\left.\alpha, \bar{\alpha} \mid p_{1}\right)$.
Assume that $p_{1}=(a+b i)(c+d i)$ where $a, b, c, d \in \mathbb{Z}$ hence $a c-b d=p_{1}, a d=-b c,(a, b)=(c, d)=1$.
Therefore $a=c, b=-d$ and $p_{1}=a^{2}+b^{2}$. We obtain $p_{1} \equiv 1(\bmod 4)$.
On the other hand if $p_{1} \equiv 1(\bmod 4)$ then by Exercise 8 we may find $a, b \in \mathbb{Z}$ such that $p_{1}=a^{2}+b^{2}=(a+b i)(a-b i)$, where neither factor is a unit $\left(N(a+b i)=N(a-b i)=a^{2}+b^{2}=p_{1}>1\right)$. Hence $\alpha=u(a+b i)(a-b i)$. Therefore element α in $\mathbb{Z}[i]$ is irreducible if $N(\alpha)$ is a prime number in \mathbb{Z} or α is a prime number in \mathbb{Z} which is congruent to 3 modulo 4 .

Exercise 10. Let $\omega=e^{\frac{2 \pi i}{3}}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Define $N: \mathbb{Z}[\omega] \rightarrow \mathbb{Z}$ by

$$
N(a+b \omega)=a^{2}-a b+b^{2} .
$$

Show that if $a+b \omega$ is written in the form $u+v i$, where u and v are real, then $N(a+b \omega)=u^{2}+v^{2}$.

Proof. We have $a+b \omega=a-\frac{1}{2} b+\frac{\sqrt{3}}{2} b i=u+v i$, hence
$N(u+v i)=N\left(a-\frac{1}{2} b+\frac{\sqrt{3}}{2} b i\right)=N(a+b \omega)=a^{2}-a b+b^{2}=\left(a-\frac{1}{2} b\right)^{2}+\left(\frac{\sqrt{3}}{2} b\right)^{2}=u^{2}+v^{2}$.

Exercise 11. Show that for all $\alpha, \beta \in \mathbb{Z}[\omega], N(\alpha \beta)=N(\alpha) N(\beta)$, either by direct computation or by using exercise 10 . Conclude that if $\alpha \mid \gamma$ in $\mathbb{Z}[\omega]$, then $N(\alpha) \mid N(\gamma)$ in \mathbb{Z}.

Proof. Let $\alpha=a+b \omega=u_{\alpha}+v_{\alpha} i, \beta=c+d \omega=u_{\beta}+v_{\beta} i$, then

$$
\alpha \beta=\left(u_{\alpha}+v_{\alpha} i\right)\left(u_{\beta}+v_{\beta} i\right)=\left(u_{\alpha} u_{\beta}-v_{\alpha} v_{\beta}\right)+\left(u_{\alpha} v_{\beta}+u_{\beta} v_{\alpha}\right) i .
$$

Whence
$N(\alpha \beta)=\left(u_{\alpha} u_{\beta}-v_{\alpha} v_{\beta}\right)^{2}+\left(u_{\alpha} v_{\beta}+u_{\beta} v_{\alpha}\right)^{2}=\left(u_{\alpha}^{2}+v_{\alpha}^{2}\right)\left(u_{\beta}^{2}+v_{\beta}^{2}\right)=N(\alpha) N(\beta)$.
If $\alpha \mid \gamma$ in $\mathbb{Z}[\omega]$ then there exists $\beta \in \mathbb{Z}[\omega]$ such that $\alpha \beta=\gamma$.
Thus $N(\gamma)=N(\alpha \beta)=N(\alpha) N(\beta)$.
Since $N(\beta) \in \mathbb{Z}$ we get $N(\alpha) \mid N(\gamma)$ in \mathbb{Z}.

Exercise 12. Let $\omega=e^{\frac{2 \pi i}{3}}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Define $N: \mathbb{Z}[\omega] \rightarrow \mathbb{Z}$ by

$$
N(a+b \omega)=a^{2}-a b+b^{2} .
$$

Let $\alpha \in \mathbb{Z}[\omega]$. Show that α is a unit iff $N(\alpha)=1$, and find all units in $\mathbb{Z}[\omega]$.
Proof. If α is a unit then $\alpha \mid 1$ in $\mathbb{Z}[\omega]$, by exercise 11 we get that $N(\alpha) \mid N(1)=1$.
Since $N(\alpha) \geq 0, N(\alpha) \in \mathbb{Z}$ we obtain $N(\alpha)=1$.
On the other hand.
Assume that $\alpha=a+b \omega$ and $N(\alpha)=1$.
We have $a-b-b \omega \in \mathbb{Z}[\omega]$ and
$(a+b \omega)(a-b-b \omega)=\left(a-\frac{1}{2} b+\frac{\sqrt{3}}{2} b i\right)\left(a-\frac{1}{2} b-\frac{\sqrt{3}}{2} b i\right)=\left(a-\frac{1}{2} b\right)^{2}+\frac{3}{4} b^{2}=a^{2}-a b+b^{2}=1$.
Hence α is a unit.
We will find all units in $\mathbb{Z}[\omega]$.
Let $\alpha=a+b \omega$ is a unit in $\mathbb{Z}[\omega]$.
Therefore $a^{2}-a b+b^{2}=1$.
If $b=0$ then $a^{2}=1$ and we have units $1,-1$.
If $a=0$ then $b^{2}=1$ and we have units $\omega,-\omega$.
If $b \neq 0$ then $(a-b)^{2}+a^{2}+b^{2}=2\left(a^{2}-a b+b^{2}\right)=2$.
Since $b \in \mathbb{Z}, b \neq 0,(a-b)^{2}+a^{2} \geq 0$ we have $b^{2}=1$ and $(a-b)^{2}+a^{2}=1$.
Since $a \in \mathbb{Z}, a \neq 0,(a-b)^{2} \geq 0$ we have $a^{2}=1, a=b$.
Therefore we have units $1+\omega,-1-\omega$.
Finally, we have six units $1,-1, \omega,-\omega, 1+\omega,-1-\omega$.

Exercise 13. Let $\omega=e^{\frac{2 \pi i}{3}}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Define $N: \mathbb{Z}[\omega] \rightarrow \mathbb{Z}$ by

$$
N(a+b \omega)=a^{2}-a b+b^{2} .
$$

Show that $1-\omega$ is irreducible in $\mathbb{Z}[\omega]$, and that $3=u(1-\omega)^{2}$ for some unit u.

Proof. Assume that in $\mathbb{Z}[\omega]$ we have

$$
1-\omega=\alpha \beta
$$

hence $N(1-\omega)=N(\alpha) N(\beta)$.
Therefore $3=N(\alpha) N(\beta)$ and thus $N(\alpha)=1$ or $N(\beta)=1$.
By exercise 12 we get α or β is a unit in $\mathbb{Z}[\omega]$.
Hence $1-\omega$ is irreducible in $\mathbb{Z}[\omega]$.
We have $\omega^{2}+\omega+1=0$ hence

$$
3=(1+\omega)(1-\omega)^{2}
$$

Note that $-\omega(1+\omega)=1$ hence $u=1+\omega$ is a unit in $\mathbb{Z}[\omega]$.
Exercise 14. Modify exercise 7 to show that $\mathbb{Z}[\omega]$ is a principal ideal domain (PID)(i.e., every ideal I is principal), hence a UFD. Here the squares are replaced by parallelograms; one of them has vertices $0, \alpha, \omega \alpha,(\omega+1) \alpha$ and all others are translates of this one. Use exercise 10 for the geometric argument at the end.

Proof. A subset I is called an ideal of $\mathbb{Z}[\omega]$ if it satisfies the following two conditions:

1. I is an additive subgroup of $\mathbb{Z}[\omega]$, i.e. $\forall_{\alpha, \beta \in I} \alpha-\beta \in I$,
2. $\forall_{\alpha \in I} \forall_{\gamma \in \mathbb{Z}[\omega]} \gamma \alpha \in I$.

A principal ideal is an ideal I in a ring $\mathbb{Z}[\omega]$ that is generated by a single element a of $\mathbb{Z}[\omega]$. The principal ideal generated by $\alpha \in \mathbb{Z}[\omega]$ can be expressed in the form $I=\{\gamma \alpha: \gamma \in \mathbb{Z}[\omega]\}$.
We take $\alpha \in I-\{0\}$ such that $N(\alpha) \in \mathbb{Z}_{+}$is minimized, and consider the multiplies $\gamma \alpha, \gamma \in \mathbb{Z}[\omega]$.
These are the vertices of a lattice Λ which divide the whole of complex plane into congruent parallelograms, copies of an 2-dimensional fundamental parallelogram with vertices $0, \alpha, \omega \alpha,(1+\omega) \alpha$.
We have

$$
\Lambda=\left\{v_{1} \alpha+v_{2} \omega \alpha, v_{1}, v_{2} \in \mathbb{Z}\right\}=\{\gamma \alpha, \gamma \in \mathbb{Z}[\omega]\} \subset I
$$

We take arbitrary $\beta \in I$.
The fundamental parallelogram K of the lattice $\beta+\Lambda$ is a translation of the fundamental parallelogram of the lattice Λ. Sides of parallelogram K have length equal $N(\alpha)$.
We may assume that the origin of coordinate system is in interior or on boundary of the parallelogram $A B C D$, where A, B, C, D are vertices of $\beta+\Lambda$ and parallelogram $A B C D$ is a translation of K.
Diagonals divide square $A B C D$ into four congruent triangles with diameters equal $N(\alpha)$. Therefore the distance between origin and the nearest from vertices A, B, C, D, say A, is smaller then $N(\alpha)$.
Thus $N(A)<N(\alpha)$. Since $A \in \beta+\Lambda \subset I$ by definition of α we obtain $A=0$. Hence $0 \in \beta+\Lambda$. Therefore $\beta \in \Lambda$ and

$$
I=\Lambda=\{\gamma \alpha, \gamma \in \mathbb{Z}[\omega]\} .
$$

Thus ideal I is principal and $\mathbb{Z}[\omega]$ is a principal ideal domain, hence also unique factorization domain (UFD).

Exercise 15. Here is a proof of Farmat's conjecture for $n=4$: If $x^{4}+y^{4}=z^{4}$ has a solution in positive integers, then so does $x^{4}+y^{4}=w^{2}$. Let x, y, w be a solution with smallest possible w. Then x^{2}, y^{2}, w is a primitive Pythagorean triple.
Assuming (without loss of generality) that x is odd, we can write

$$
x^{2}=m^{2}-n^{2}, y^{2}=2 m n, w=m^{2}+n^{2}
$$

with m and n relatively prime positive integers, not both odd.
(a) Show that

$$
x=r^{2}-s^{2}, n=2 r s, m=r^{2}+s^{2}
$$

with r and s relatively prime positive integers, not both odd.
Indeed:
Since $x^{2}+n^{2}=m^{2}$ and $(m, n)=1$ we get that x, n, m is a primitive Pythagorean triple. We know that x is odd thus

$$
x=r^{2}-s^{2}, n=2 r s, m=r^{2}+s^{2}
$$

with r and s relatively prime positive integers, not both odd.
(b) Show that r, s, and m are pairwise relatively prime. Using $y^{2}=4 r s m$, conclude that r, s, and m are all squares.
Indeed: Since $m=r^{2}+s^{2},(r, s)=1$ we get that r, s, m are pairwise relatively prime.
We have that $\left(\frac{y}{2}\right)^{2}=r s m,(r, s)=(r, m)=(s, m)=1$ hence

$$
r=a^{2}, s=b^{2}, m=c^{2}
$$

with a, b, c positive integers.
(c) Show that $a^{4}+b^{4}=c^{2}$, and that this contradicts minimality of w.

Indeed: Since $r^{2}+s^{2}=m$ we get $a^{4}+b^{4}=c^{2}$, and because
$c \leq c^{2}=m \leq m^{2}<m^{2}+n^{2}=w$ this contradicts minimality of w.

Exercise 16. Let p be an odd prime, $\omega=e^{\frac{2 \pi i}{p}}$. Show that

$$
(1-\omega)\left(1-\omega^{2}\right) \cdot \ldots \cdot\left(1-\omega^{p-1}\right)=p
$$

Note that $1, \omega, \omega^{2}, \ldots, \omega^{p-1}$ are the p roots of the polynomial $t^{p}-1$, hence we have the identity

$$
(t-1)(t-\omega)\left(t-\omega^{2}\right) \cdot \ldots \cdot\left(t-\omega^{p-1}\right)=t^{p}-1
$$

Thus

$$
(t-\omega)\left(t-\omega^{2}\right) \cdot \ldots \cdot\left(t-\omega^{p-1}\right)=1+t+t^{2}+\ldots+t^{p-1}
$$

We take $t=1$ and obtain

$$
(1-\omega)\left(1-\omega^{2}\right) \cdot \ldots \cdot\left(1-\omega^{p-1}\right)=p
$$

Exercise 17. Assume that
p is an odd prime in \mathbb{Z};
x, y, z have no common integral factor and are not multiples of $p ;$
$x^{p}+y^{p}=z^{p} ;$
ω is the p th root of unity.
Suppose that $\mathbb{Z}[\omega]$ is a UFD (unique factorization domain) and $\pi \mid x+y \omega$, where π is a prime in $\mathbb{Z}[\omega]$. Show that π does not divide any of the other factors on the left side of equation

$$
(x+y)(x+y \omega)\left(x+y \omega^{2}\right) \ldots\left(x+y \omega^{p-1}\right)=z^{p},
$$

by showing that if it did, then π would divide both z and $y p$: but z and $y p$ are relatively prime, hence $z m+y p n=1$ for some $m, n \in \mathbb{Z}$. How is this a contradiction?

Proof. Since π is a prime in $\mathbb{Z}[\omega]$ unique factorization domain and

$$
\pi \mid(x+y)(x+y \omega)\left(x+y \omega^{2}\right) \ldots\left(x+y^{p-1}\right)=z^{p}
$$

we get $\pi \mid z$.
If $\pi \mid x+y \omega^{i_{0}}$, where $0 \leq i_{0} \leq p-1, i_{0} \neq 1$ then

$$
\pi \mid\left(x+y \omega^{i_{0}}\right)-(x+y \omega)=y\left(\omega^{i_{0}}-\omega\right)=y \omega^{i_{0}}\left(1-\omega^{1-i_{0}}\right),
$$

π is not root of unity and $1-i_{0} \neq 0$ thus

$$
\pi\left|y\left(1-\omega^{1-i_{0}}\right)\right| y(1-\omega)\left(1-\omega^{2}\right) \cdot \ldots \cdot\left(1-\omega^{p-1}\right)=y p
$$

But z and $y p$ are relatively prime in \mathbb{Z}, hence $z m+y p n=1$ for some $m, n \in \mathbb{Z}$. Therefore

$$
\pi \mid z m+y p n=1
$$

which contradict the fact that prime number π is not a root of unity in $\mathbb{Z}[\omega]$.

