
Exercises, II.

Maciej Zakarczemny

1



2

Exercise 1. De�ne N : Z[i]→ Z by N(a+ bi) = a2 + b2.

Verify that for all α, β ∈ Z[i], N(αβ) = N(α)N(β), either by direct com-

putation or by using the fact that N(a+ bi) = (a+ bi)(a− bi).
Conclude that if α|γ in Z[i], then N(α)|N(γ) in Z.

Proof. Let α = a+ bi, β = c+ di we have:

N(αβ) = N((a+bi)(c+di)) = N(ac−bd+(ad+bc)i) = (ac−bd+(ad+bc)i)(ac−bd−(ad+bc)i) =

= (a+ bi)(c+ di)(a− bi)(c− di) = N(α)N(β).

If α|γ in Z[i] then there exists β ∈ Z[i] such that

αβ = γ,

thus by above

N(α)N(β) = N(γ),

since α, β, γ ∈ Z[i] we get N(α), N(β), N(γ) ∈ Z and N(α)|N(γ) in Z.

Exercise 2. Let α ∈ Z[i]. Show that α is a unit i� N(α) = 1. Conclude

that the only units are ±1 and ±i.

Proof. Let α = a+ bi. If α|1 in Z[i] then there exists β ∈ Z[i] such that

αβ = 1,

thus

N(α)N(β) = N(1) = 1,

since α, β ∈ Z[i] we get N(α), N(β) ∈ Z and N(α)|1 in Z. Therefore

a2 + b2 = N(α) = ±1

Hence

(a, b) ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)},

thus

α ∈ {1, −1, i, −i}.

On the other hand we have

1 · 1 = 1, (−1) · (−1) = 1, i · (−i) = 1.

Hence α is a unit i� N(α) = 1.
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Exercise 3. Let α ∈ Z[i]. Show that if N(α) is a prime in Z then α is

irreducible in Z[i]. Show that the same conclusion holds if N(α) = p2,

where p is a prime in Z, p ≡ 3 (mod 4).

Proof. If α = βγ in Z[i] then N(α) = N(β)N(γ).

Since N(α) is a prime in Z and N(β), N(γ) are nonnegative we obtain

N(β) = 1 or N(γ) = 1.

Assume that N(γ) = 1 then γ is equal ±1 or ±i hence γ is a unit in Z[i].

Analogously, if N(β) = 1 then β is a unit in Z[i].

We have shown that if α = βγ then β or γ is a unit in Z[i].

Therefore α is irreducible in Z[i].

Now we assume that N(α) = p2.

If α = βγ in Z[i] then N(α) = N(β)N(γ).

We denote β = c+ di and get N(β) = c2 + d2 6≡ 3 (mod 4) thus N(β) 6= p,

analogously N(γ) 6= p.

Since p2 = N(β)N(γ) we obtain N(β) = 1 or N(γ) = 1 and proceeding as

above, we show that α is irreducible.

Exercise 4. Show that 1 − i is irreducible in Z[i] and that 2 = u(1 − i)2

for some unit u.

Proof. Since N(1 − i) = 12 + (−1)2 = 2 is a prime number in Z by Exer-

cise 3, we get that 1− i is irreducible in Z[i].

We have i(1− i)2 = i(12 − 2i+ i2) = i(−2i) = 2 hence we may take u = i.

Since i(−i) = 1 we obtain that u is a unit in Z[i].

Note that 2 = i(1− i)2 is a complete factorization of 2 in Z[i].

In polish:

Poka», »e 1 − i jest nieprzywiedlne (niektórzy pisz¡ nierozkªadalne) w Z[i]

oraz, »e 2 = u(1− i)2 dla pewnej jedno±ci u.

Dowód: Poniewa» N(1− i) = 12 + (−1)2 = 2 jest caªkowit¡ liczb¡ pierwsz¡,

zatem na podstawie Zadania 3, dostajemy, »e 1−i jest nieprzewiedlne w Z[i].

Mamy i(1 − i)2 = i(12 − 2i + i2) = i(−2i) = 2, wobec tego mo»emy wzi¡¢

u = i. Skoro i(−i) = 1, zatem u to jedno±¢ w Z[i].

Zauwa»my, »e 2 = i(1− i)2 to kompletny rozkªad 2 w Z[i].
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Exercise 5. Notice that (2 + i)(2 − i) = 5 = (1 + 2i)(1 − 2i). How is this

consistent with unique factorization?

Proof. Z[i] is a unique factorization domain: every nonzero Gaussian integer

can be expressed in a unique way (up to order and unit factors) as a product

of Gaussian primes.

Since i is a unit in Z[i] and

(2 + i) = i(1− 2i), (2− i) = (−i)(1 + 2i)

equation

(2 + i)(2− i) = 5 = (1 + 2i)(1− 2i)

gives the same factorization of 5 up to order and unit factors.
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Exercise 6. Show that every nonzero, non-unit Gaussian integer α is a

product of irreducible elements, by induction on N(α).

Proof. If N(α) = 1 then by exercise 2, α is a unit.

Hence we may assume, that N(α) > 1.

If N(α) = 2 then by exercise 3 number α is irreducible in Z[i].

Let s > 2 be an integer.

We will proceed by induction on s.

Assume that every nonzero, non-unit α ∈ Z[i] such that N(α) < s is a

product of irreducible elements.

Let α be any element of Z[i] such that N(α) = s.

If α is irreducible in Z[i] then α is a product of irreducible elements (product

of one irreducible element namely α).

If α is reducible then α = βγ where β, γ ∈ Z[i] are not units.

By exercise 2 we get N(β), N(γ) > 1, hence N(β), N(γ) < s.

By inductive assumption β and γ are products of irreducible elements.

Therefore α = βγ is a product of irreducible elements.

Thus every nonzero, non-unit α ∈ Z[i] such that N(α) < s+ 1 is a product

of irreducible elements.

Therefore every nonzero, non-unit Gaussian integer α is a product of irre-

ducible elements.
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Exercise 7. Show that Z[i] is a principal ideal domain (PID), i.e., every

ideal I is principal.

Proof. A subset I is called an ideal of Z[i] if it satis�es the following two

conditions:

1. I is an additive subgroup of Z[i], i.e. ∀α,β∈I α− β ∈ I,

2. ∀α∈I∀γ∈Z[i] γα ∈ I.

A principal ideal is an ideal I in a ring Z[i] that is generated by a single

element a of Z[i]. The principal ideal generated by α ∈ Z[i] can be expressed

in the form I = {γα : γ ∈ Z[i]}. We take α ∈ I −{0} such that N(α) ∈ Z+

is minimized, and consider the multiplies γα, γ ∈ Z[i].

These are the vertices of a lattice Λ which divide the whole of complex plane

into congruent squares, copies of an 2−dimensional fundamental square with

vertices 0, α, iα, (1 + i)α.

We have

Λ = {v1α + v2iα, v1, v2 ∈ Z} = {γα, γ ∈ Z[i]} ⊂ I.

We take arbitrary β ∈ I.
The fundamental square K of the lattice β+Λ is a translation of the funda-

mental square of the lattice Λ. Sides of square K have length equal N(α).

We may assume that the origin of coordinate system is in interior or on

boundary of the square ABCD, where A,B,C,D are vertices of β + Λ and

square ABCD is a translation of K.

Diagonals divide square ABCD into four congruent triangles with diame-

ters equal N(α). Therefore the distance between origin and the nearest from

vertices A,B,C,D, say A, is smaller then N(α).

Thus N(A) < N(α). Since A ∈ β + Λ ⊂ I by de�nition of α we obtain

A = 0. Hence 0 ∈ β + Λ. Therefore β ∈ Λ and

I = Λ = {γα, γ ∈ Z[i]}.

Thus ideal I is principal and Z[i] is a principal ideal domain.
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Exercise 8. We will use unique factorization in Z[i] to prove that every

prime p ≡ 1( mod 4) is a sum of two squares.

(a) Use the fact that the multiplicative group Z∗p of integer mod p

is cyclic to show that if p ≡ 1( mod 4) then n2 ≡ −1( mod p) for

some n ∈ Z.

(b) Prove that p cannot be irreducible in Z[i].

(Hint: p|n2 + 1 = (n+ i)(n− i).)

(c) Prove that p is a sum of two squares.(Hint: (b) shows that

p = (a+ bi)(c+ di) with neither factor a unit. Take norms.)

Proof. Let g be a generator of the cyclic group Z∗p, we have gp−1 = 1.

Hence
(
g
p−1
4

)4
= 1 in Z∗p (note that p ≡ 1( mod 4)).

We take n = g
p−1
4 in Z and obtain n2 ≡ −1( mod p).

Since p|n2 + 1 we get p|(n+ i)(n− i) in Z[i].

If p is irreducible in Z[i] then p|n+ i and also p|n− i.
Thus p|2i and p2|4 but p ≡ 1( mod 4) and we get contradiction.

Therefore p is reducible in Z[i].

We take p = (a+ bi)(c+ di), a, b, c, d ∈ Z where neither factor is a unit.

Hence p2 = (a2 + b2)(c2 + d2) where a2 + b2, c2 + d2 6= 1.

Thus p = a2 + b2, a, b ∈ Z.
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Exercise 9. Describe all irreducible elements in Z[i].

Proof. Non-unit, non-zero element in Z[i], is said to be irreducible if it is

not a product of two non-units. Assume that α is irreducible in Z[i].

Let αᾱ = N(α) = p1
k1p2

k2 · . . . · pnkn is a decomposition of N(α) in Z.
Hence α|p1k1p2k2 · . . . · pnkn .
Since α is irreducible in Z[i] (and hence ᾱ also) we may assume, that α, ᾱ|p1.
Therefore N(α)|p21. If N(α) = 1 then α is a unit, contradiction.

If N(α) = p1 then α is irreducible, (if α is a product of two non-units, then

N(α) is a product of two natural numbers neither equal to one).

If αᾱ = N(α) = p21 then α = up1, ᾱ = u−1p1, where u is a unit in Z[i] (note

that α, ᾱ|p1).
Assume that p1 = (a+ bi)(c+ di) where a, b, c, d ∈ Z hence

ac− bd = p1, ad = −bc, (a, b) = (c, d) = 1.

Therefore a = c, b = −d and p1 = a2 + b2. We obtain p1 ≡ 1( mod 4).

On the other hand if p1 ≡ 1( mod 4) then by Exercise 8 we may �nd

a, b ∈ Z such that p1 = a2 + b2 = (a+ bi)(a− bi), where neither factor is a
unit (N(a+bi) = N(a−bi) = a2+b2 = p1 > 1). Hence α = u(a+bi)(a−bi).
Therefore element α in Z[i] is irreducible if N(α) is a prime number in Z or

α is a prime number in Z which is congruent to 3 modulo 4.



9

Exercise 10. Let ω = e
2πi
3 = −1

2
+
√
3
2
i. De�ne N : Z[ω]→ Z by

N(a+ bω) = a2 − ab+ b2.

Show that if a + bω is written in the form u + vi, where u and v are real,

then N(a+ bω) = u2 + v2.

Proof. We have a+ bω = a− 1
2
b+

√
3
2
bi = u+ vi, hence

N(u+vi) = N(a−1

2
b+

√
3

2
bi) = N(a+bω) = a2−ab+b2 = (a−1

2
b)2+(

√
3

2
b)2 = u2+v2.

Exercise 11. Show that for all α, β ∈ Z[ω], N(αβ) = N(α)N(β), either by

direct computation or by using exercise 10. Conclude that if α|γ in Z[ω],

then N(α)|N(γ) in Z.

Proof. Let α = a+ bω = uα + vαi, β = c+ dω = uβ + vβi, then

αβ = (uα + vαi)(uβ + vβi) = (uαuβ − vαvβ) + (uαvβ + uβvα)i.

Whence

N(αβ) = (uαuβ−vαvβ)2+(uαvβ+uβvα)2 = (u2α+v2α)(u2β+v2β) = N(α)N(β).

If α|γ in Z[ω] then there exists β ∈ Z[ω] such that αβ = γ.

Thus N(γ) = N(αβ) = N(α)N(β).

Since N(β) ∈ Z we get N(α)|N(γ) in Z.
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Exercise 12. Let ω = e
2πi
3 = −1

2
+
√
3
2
i. De�ne N : Z[ω]→ Z by

N(a+ bω) = a2 − ab+ b2.

Let α ∈ Z[ω]. Show that α is a unit i� N(α) = 1, and �nd all units in Z[ω].

Proof. If α is a unit then α|1 in Z[ω], by exercise 11 we get thatN(α)|N(1) = 1.

Since N(α) ≥ 0, N(α) ∈ Z we obtain N(α) = 1.

On the other hand.

Assume that α = a+ bω and N(α) = 1.

We have a− b− bω ∈ Z[ω] and

(a+bω)(a−b−bω) = (a−1
2
b+
√
3
2
bi)(a−1

2
b−
√
3
2
bi) = (a−1

2
b)2+3

4
b2 = a2−ab+b2 = 1.

Hence α is a unit.

We will �nd all units in Z[ω].

Let α = a+ bω is a unit in Z[ω].

Therefore a2 − ab+ b2 = 1.

If b = 0 then a2 = 1 and we have units 1,−1.

If a = 0 then b2 = 1 and we have units ω,−ω.
If b 6= 0 then (a− b)2 + a2 + b2 = 2(a2 − ab+ b2) = 2.

Since b ∈ Z, b 6= 0, (a− b)2 + a2 ≥ 0 we have b2 = 1 and (a− b)2 + a2 = 1.

Since a ∈ Z, a 6= 0, (a− b)2 ≥ 0 we have a2 = 1, a = b.

Therefore we have units 1 + ω, −1− ω.
Finally, we have six units 1,−1, ω,−ω, 1 + ω,−1− ω.
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Exercise 13. Let ω = e
2πi
3 = −1

2
+
√
3
2
i. De�ne N : Z[ω]→ Z by

N(a+ bω) = a2 − ab+ b2.

Show that 1 − ω is irreducible in Z[ω], and that 3 = u(1 − ω)2 for some

unit u.

Proof. Assume that in Z[ω] we have

1− ω = αβ,

hence N(1− ω) = N(α)N(β).

Therefore 3 = N(α)N(β) and thus N(α) = 1 or N(β) = 1.

By exercise 12 we get α or β is a unit in Z[ω].

Hence 1− ω is irreducible in Z[ω].

We have ω2 + ω + 1 = 0 hence

3 = (1 + ω)(1− ω)2.

Note that −ω(1 + ω) = 1 hence u = 1 + ω is a unit in Z[ω].

Exercise 14. Modify exercise 7 to show that Z[ω] is a principal ideal domain

(PID)(i.e., every ideal I is principal), hence a UFD. Here the squares are

replaced by parallelograms; one of them has vertices 0, α, ωα, (ω + 1)α

and all others are translates of this one. Use exercise 10 for the geometric

argument at the end.

Proof. A subset I is called an ideal of Z[ω] if it satis�es the following two

conditions:

1. I is an additive subgroup of Z[ω], i.e. ∀α,β∈I α− β ∈ I,

2. ∀α∈I∀γ∈Z[ω] γα ∈ I.

A principal ideal is an ideal I in a ring Z[ω] that is generated by a single

element a of Z[ω]. The principal ideal generated by α ∈ Z[ω] can be ex-

pressed in the form I = {γα : γ ∈ Z[ω]}.
We take α ∈ I − {0} such that N(α) ∈ Z+ is minimized, and consider the

multiplies γα, γ ∈ Z[ω].

These are the vertices of a lattice Λ which divide the whole of complex plane

into congruent parallelograms, copies of an 2−dimensional fundamental par-

allelogram with vertices 0, α, ωα, (1 + ω)α.

We have

Λ = {v1α + v2ωα, v1, v2 ∈ Z} = {γα, γ ∈ Z[ω]} ⊂ I.
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We take arbitrary β ∈ I.
The fundamental parallelogram K of the lattice β+Λ is a translation of the

fundamental parallelogram of the lattice Λ. Sides of parallelogram K have

length equal N(α).

We may assume that the origin of coordinate system is in interior or on

boundary of the parallelogram ABCD, where A,B,C,D are vertices of

β + Λ and parallelogram ABCD is a translation of K.

Diagonals divide square ABCD into four congruent triangles with diameters

equal N(α). Therefore the distance between origin and the nearest from

vertices A,B,C,D, say A, is smaller then N(α).

Thus N(A) < N(α). Since A ∈ β + Λ ⊂ I by de�nition of α we obtain

A = 0. Hence 0 ∈ β + Λ. Therefore β ∈ Λ and

I = Λ = {γα, γ ∈ Z[ω]}.

Thus ideal I is principal and Z[ω] is a principal ideal domain, hence also

unique factorization domain (UFD).
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Exercise 15. Here is a proof of Farmat's conjecture for n = 4 :

If x4 + y4 = z4 has a solution in positive integers, then

so does x4 + y4 = w2. Let x, y, w be a solution with smallest

possible w. Then x2, y2, w is a primitive Pythagorean triple.

Assuming (without loss of generality) that x is odd, we can write

x2 = m2 − n2, y2 = 2mn, w = m2 + n2

with m and n relatively prime positive integers, not both odd.

(a) Show that

x = r2 − s2, n = 2rs, m = r2 + s2

with r and s relatively prime positive integers, not both odd.

Indeed:

Since x2 + n2 = m2 and (m,n) = 1 we get that x, n,m is a primitive

Pythagorean triple. We know that x is odd thus

x = r2 − s2, n = 2rs, m = r2 + s2

with r and s relatively prime positive integers, not both odd.

(b) Show that r, s, and m are pairwise relatively prime. Using

y2 = 4rsm, conclude that r, s, and m are all squares.

Indeed: Since m = r2 + s2, (r, s) = 1 we get that r, s,m are pairwise

relatively prime.

We have that (y
2
)2 = rsm, (r, s) = (r,m) = (s,m) = 1 hence

r = a2, s = b2, m = c2

with a, b, c positive integers.

(c) Show that a4 + b4 = c2, and that this contradicts minimality of w.

Indeed: Since r2 + s2 = m we get a4 + b4 = c2, and because

c ≤ c2 = m ≤ m2 < m2 + n2 = w this contradicts minimality of w.
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Exercise 16. Let p be an odd prime, ω = e
2πi
p . Show that

(1− ω)(1− ω2) · . . . · (1− ωp−1) = p.

Note that 1, ω, ω2, . . . , ωp−1 are the p roots of the polynomial tp − 1,

hence we have the identity

(t− 1)(t− ω)(t− ω2) · . . . · (t− ωp−1) = tp − 1.

Thus

(t− ω)(t− ω2) · . . . · (t− ωp−1) = 1 + t+ t2 + . . .+ tp−1.

We take t = 1 and obtain

(1− ω)(1− ω2) · . . . · (1− ωp−1) = p.
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Exercise 17. Assume that

p is an odd prime in Z;

x, y, z have no common integral factor and are not multiples of p;

xp + yp = zp;

ω is the pth root of unity.

Suppose that Z[ω] is a UFD (unique factorization domain) and π|x + yω,

where π is a prime in Z[ω]. Show that π does not divide any of the other

factors on the left side of equation

(x+ y)(x+ yω)(x+ yω2) . . . (x+ yωp−1) = zp,

by showing that if it did, then π would divide both z and yp: but z and yp

are relatively prime, hence zm + ypn = 1 for some m,n ∈ Z. How is this a

contradiction?

Proof. Since π is a prime in Z[ω] unique factorization domain and

π|(x+ y)(x+ yω)(x+ yω2) . . . (x+ yp−1) = zp

we get π|z.
If π|x+ yωi0 , where 0 ≤ i0 ≤ p− 1, i0 6= 1 then

π|(x+ yωi0)− (x+ yω) = y(ωi0 − ω) = yωi0(1− ω1−i0),

π is not root of unity and 1− i0 6= 0 thus

π|y(1− ω1−i0)|y(1− ω)(1− ω2) · . . . · (1− ωp−1) = yp.

But z and yp are relatively prime in Z, hence zm + ypn = 1 for some

m,n ∈ Z. Therefore
π|zm+ ypn = 1

which contradict the fact that prime number π is not a root of unity in

Z[ω].


