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Introduction

Assume that g : N→ N is injective mapping. Let:

Dg (n) := min{m ∈ N : g(1), g(2), . . . , g(n) are distinct modulo m}. (1)

The function Dg is commonly called the discriminator of the function g , because
it provides the least modulus which discriminates the successive values of the
function g .
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Introduction

The problem �rst appears in the context of the computation of square roots of
a long sequence of integers.
Arnold, Benkoski, and McCabe [1] de�ned, for a natural number n, the smallest
natural number m such that 12, 22, . . . , n2 are all distinct modulo m.
In this case, the value Dg (n) for n > 4 is the smallest m ≥ 2n such that m is a
prime or twice a prime.
Bremser, Schumer, Washington [2] determined for each su�ciently large natural
number, the smallest positive integer m such that 1j , 2j , . . . , nj are all
incongruent modulo m.

[1] L.K. Arnold, S.J. Benkoski and B.J. McCabe, The discriminator (a simple application of Bertrand's postulate),

Amer. Math. Monthly (1985), 92, 275-277.

[2] P. S. Bremser, P.D. Schumer, L.C. Washington, A note on the incongruence of consecutive integers to a �xed

power, J. Number Theory (1990), 35, no. 1, 105-108.
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Introduction

Lately, the discriminators of various types of functions were considered by Zieve
[12], Sun [8], Moree and Zumalacárrequi [6], Haque and Shallit [4].

[4] S. Haque and J. Shallit Discriminators and k-regular sequences INTEGERS 16(2106), Paper A76.

[6] P. Moree and A. Zumalacárregui, Salajan's conjecture on discriminating terms in an exponential sequence,

J. Number Theory 160(2016),646-665.

[8] Zhi-Wei Sun, On funtions taking only prime values, J. Number Theory 133(2013), 2794-2812.

[12] M. Zieve, A note on the discriminator, J. Number Theory 73(1998), 122-138.
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Introduction

There is also a slightly di�erent de�nition of a discriminator in terms of
cancellations algorithms.
Instead of (1) Browkin and Cao also considered an arbitrary function
f : N× N→ N with the set

An = {f (n1, n2) : n1 + n2 ≤ n; n1, n2 ∈ N}.

They cancel from N all numbers from the set of divisors

Dn = {d ∈ N : d |m for some m ∈ An},

and de�ne bf (n) to be the least non-canceled number (see Browkin and Cao in
the paper [3]).

[3] J. Browkin, H-Q. Cao,Modi�cations of the Eratosthenes sieve, Colloq. Math. 135, (2014), pp. 127-138.
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Introduction

Example

If
An = {(n1 + n2)

2 − n2
2 : n1 + n2 ≤ n; n1, n2 ∈ N}.

Dn = {d ∈ N : ∃n1,n2∈N, n1+n2≤n d|(n1 + n2)
2 − n2

2}

and bf (n) is the least number in the set N \ Dn then

A1 = ∅
D1 = ∅ bf (1) = 1,
A2 = {3}
D2 = {1, 3} bf (2) = 2,
A3 = {3, 5, 8}
D3 = {1, 2, 3, 4, 5, 8} bf (3) = 6,
A4 = {3, 5, 7, 8, 12, 15}
D4 = {1, 2, 3, 4, 5, 6, 7, 8, 12, 15} bf (4) = 9,
A5 = {3, 5, 7, 8, 9, 12, 15, 16, 21, 24}
D5 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 21, 24} bf (5) = 10,
A6 = {3, 5, 7, 8, 9, 11, 12, 15, 16, 20, 21, 24, 25, 27, 32, 35}
D6 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 20, 21, 24, 27, 32, 35} bf (6) = 13,
A7 = {3, 5, 7, 8, 9, 11, 12, 13, 15, 16, 20, 21, 24, 25, 27, 32, 33, 35, 45, 48}
D7 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 20, 21, 24, 25, 27, 32, 33, 35, 45, 48} bf (7) = 14,
. . . . . .

Note that An = {g(s)− g(r) : 1 ≤ r < s ≤ n}, where g : N 3 r → r2 ∈ N.
In this case f (n1, n2) = (n1 + n2)

2 − n21 and bf (n) is equal to the discriminator Dr2 (n).

Hence for n > 4 we get that bf (n) is the smallest m ≥ 2n such that m is a prime or twice a prime.
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De�nitions

De�nition 2.1

Let f : Ns → N. We de�ne for a natural number n.

bf (n) = (2)

min{m ∈ N : ¬(∃n1,n2,...,ns∈N m|f (n1, n2, . . . , ns) ∧ n1 + n2 + . . .+ ns ≤ n)}.

or in other words:

For a given n ≥ 1, Dn is the set of all divisors of all numbers f (n1, n2, . . . , ns ), where n1 + n2 + . . . + ns ≤ n.
The numbers in Dn are cancelled, so the numbers in N \ Dn remain non-cancelled.
For n ≥ 1 the least non canceled number we denote by bf (n).
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De�nitions

Remark 2.2

Note that, for a natural number n, the set

{m ∈ N : ∃n1,n2,...,ns∈N m|f (n1, n2, . . . , ns) ∧ n1 + n2 + . . .+ ns ≤ n}

is �nite, thus

{m ∈ N : ¬(∃n1,n2,...,ns∈N m|f (n1, n2, . . . , ns) ∧ n1 + n2 + . . .+ ns ≤ n)}

is not empty. Therefore by minimum principle bf (n) exists.
We also have bf (1) = 1 if s > 1.
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Theorems

the factorial function

Theorem 3.1

For the function f : N 3 t → t! ∈ N we get bf (3) = 4 and

bf (n) = min{m : m > n, m is a prime},

if n 6= 3.

[10] A. Tomski, M. Zakarczemny, On some cancellation algorithms, III, article in preparation.
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Theorems

Theorem 3.2

For the function f : N 3 t → t(t + 1) ∈ N we have

bf (n) = min{m : m > n + 1, m = pk , p is a prime, k ∈ N}.

[9] A. Tomski, M. Zakarczemny, On some cancellation algorithms, NNTDM, 23 (2017), pp. 101-114.
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Theorems

Theorem 3.3

For the function f : N 3 t → t(t + 2) ∈ N we get bf (1) = 2 and

bf (n) = min{m : m > n + 2, m = pk or m = 2pk , p is an odd prime, k ∈ N},

if n > 1.

[9] A. Tomski, M. Zakarczemny, On some cancellation algorithms, NNTDM, 23 (2017), pp. 101-114.
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Theorems

Theorem 3.4

We �x some integer k ≥ 2. For the function f : N 3 t → tk ∈ N, we have

bf (n) = min{m : m > n, m is a square − free}.

[9] A. Tomski, M. Zakarczemny, On some cancellation algorithms, NNTDM, 23 (2017), pp. 101-114.
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Theorems

Theorem 3.5

We �x some integer k ≥ 1. For the function f : N 3 t → tk t ∈ N we have that for

n > k
bf (n) = min{m : m > n, (k ,m) = 1}.

[10] A. Tomski, M. Zakarczemny, On some cancellation algorithms, III, article in preparation.
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Theorems

Theorem 3.6

For the function f : N2 3 (n1, n2, . . . , ns)→ n1n2 · . . . · ns ∈ N,
where s ≥ 2, we have bf (n) = 1, if s > n ≥ 1.
For n ≥ s we have

bf (n) = min{m : m > n − s + 1, m is a prime}.

[10] A. Tomski, M. Zakarczemny, On some cancellation algorithms, III, article in preparation.
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Theorems

Theorem 3.7

For the function f : N2 3 (n1, n2)→ n1
2 + n2

2 ∈ N we have

bf (n) = min{m : 2m ≥ n + 1, m square − free product of primes ≡ 3 (mod 4)}.

[3] J. Browkin, H-Q. Cao,Modi�cations of the Eratosthenes sieve, Colloq. Math. 135, (2014), pp. 127-138.
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Theorems

Theorem 3.8

For the function f : N3 3 (n1, n2, n3)→ n1
2 + n2

2 + n23 ∈ N we have

bf (1) = 1, bf (2) = 1, bf (3) = 2, bf (4) = 4, bf (5) = 4.

Moreover, for any integer s ≥ 1 we have:

1) If 2 · 2s ≤ n < 3 · 2s , then 2
√
3

3
· 2s < bf (n) ≤ 4s ,

2) If 3 · 2s ≤ n < 2 · 2s+1, then
√
3 · 2s < bf (n) ≤ 5 · 4s−1.

Hurwitz theorem

The only natural numbers n for which n2 is not the sum of the squares of three natural numbers are the numbers

n = 2h and n = 5 · 2h, where h = 0, 1, 2, . . . .

[11] M. Zakarczemny, On some cancellation algorithms II, CzT, 5 (2017) 97-103.Maciej Zakarczemny (PK) Discriminator July 7, 2017 16 / 36



Theorems

Theorem 3.9

For the function

f : N4 3 (n1, n2, n3, n4)→ n1
2 + n2

2 + n3
2 + n4

2 ∈ N

we have

bf (1) = 1, bf (2) = 1, bf (3) = 1, bf (4) = 3, bf (5) = 3.

Moreover, for any integer s ≥ 1 we have:

1) If 3 · 2s ≤ n < 4 · 2s , then bf (n) ≤ 22s+1,

2) If 4 · 2s ≤ n < 3 · 2s+1, then bf (n) ≤ 3 · 22s+1.

[11] M. Zakarczemny, On some cancellation algorithms II, CzT, 5 (2017) 97-103
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Theorems

Theorem 3.10

For the function f : N2 3 (n1, n2)→ n1
3 + n2

3 ∈ N we have

bf (n) = min{m : m > n, m square − free, (3, ϕ(m)) = 1}.

[9] A. Tomski, M. Zakarczemny, On some cancellation algorithms, NNTDM, 23 (2017), pp. 101-114.
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Theorems

Lemma 3.11

For a natural number m > 4 and an odd number j ≥ 3 the following statements

are equivalent

(i) For all a, b ∈ N such that a+ b ≤ m − 1 we have m6 | aj + bj ,

(ii) (j , ϕ(m)) = 1 and m is square-free,

(iii) x j is a permutation polynomial of the �nite ring Z/mZ.
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Theorems

It follows from [2,p.32] that (ii) and (iii) are equivalent.

Assume that (ii) holds. If there exist a, b ∈ N such that a + b ≤ m − 1 and aj + bj ≡ 0 (mod m), then

aj ≡ (m − b)j (mod m) and 1 ≤ a < m − b ≤ m − 1. We obtain a contradiction with (iii). Hence (ii) implies (i).

On the other hand assume that (i) holds. Then for all a, b ∈ N, 1 ≤ a < b ≤ m − 1

we have following relations m6 | aj + (m − b)j andm6 | aj − bj .

Hence 1j , 2j , . . . , (m − 1)j are distinct modulo m.
We will show that m is square-free. Suppose the contrary, we put
m = p2 l > 4, where l ∈ N and p is a prime number. If we take

a =

{
pl − p if p = 2, l > 1
pl if p ≥ 3, l ≥ 1

, b =

{
p if p = 2, l > 1
pl if p ≥ 3, l ≥ 1

,

then a + b ≤ m − 1 and aj + bj ≡ 0 (mod m), thus we get contradiction with (i).
Consequently m is a square-free number.

Therefore aj ≡ 0 (mod m) implies a ≡ 0 (mod m).

Thus 0j , 1j , . . . , (m − 1)j are distinct modulo m and (iii) holds, hence (ii) holds also.

[2] P. S. Bremser, P.D. Schumer, L.C. Washington, A note on the incongruence of consecutive integers to a �xed

power, J. Number Theory (1990), 35, no. 1, 105-108.
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Theorems

Theorem 3.12

We �x some odd integer j ≥ 3. For the function

f : N2 3 (n1, n2)→ n1
j + n2

j ∈ N we have

n < bf (n) ≤ min {m : m > n, m square − free, (j , ϕ(m)) = 1}.
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Theorems

Proof.

The �rst inequality follows from the fact that if j is an odd integer then (n1 + n2)|n1 j + n2
j .

Indeed, for a natural number 2 ≤ h ≤ n, we take n1 = 1, n2 = h − 1. Hence h|n1 j + n2
j and n1 + n2 = h ≤ n.

Therefore h is canceled. Hence bf (n) > n.

For the proof of the second inequality assume that m > n, m is square-free number, (j, ϕ(m)) = 1, then by

lemma 3.11 for all n1, n2 ∈ N such that n1 + n2 ≤ n ≤ m − 1 we have m6 | nj1 + n
j
2. Hence bf (n) ≤ m and theorem

follows.
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Theorems

De�nition 3.13

For j odd, let Bj be the smallest integer such that for all n > Bj there exists
a prime p with (j , p − 1) = 1 and p ∈ (n, 3

2
n).

Remark 3.14

By the Prime Number Theorem for arithmetic progressions there is always a prime
p ≡ 2 (mod j) in (n, 3

2
n) for n su�ciently large, see [2].

[2] P. S. Bremser, P.D. Schumer, L.C. Washington, A note on the incongruence of consecutive integers to a �xed

power, J. Number Theory (1990), 35, no. 1, 105-108.

Maciej Zakarczemny (PK) Discriminator July 7, 2017 23 / 36



Theorems

De�nition 3.15

For j odd, let Qj be the set of all square-free positive integers m such that
(j , ϕ(m)) = 1.

Lemma 3.16

For all n > Bj there exists a number q ∈ Qj such that q ∈ (n, 3
2
n).

Proof.

By de�nition of Bj and Qj .
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Theorems

Theorem 3.17

We �x some odd integer j ≥ 3. For the function

f : N2 3 (n1, n2)→ n1
j + n2

j ∈ N and for all n > Bj we have

n < bf (n) <
3
2
n.

Moreover, if n > max{3,Bj} then bf (n) is a square-free number.
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Theorems

Proof.
By lemma 3.16, if n > Bj we get

min {m : m > n, m square − free, (j, ϕ(m)) = 1} < 3
2 n.

Thus by theorem 3.12 we obtain n < bf (n) < 3
2 n.

By the straightforward veri�cation for all odd j ≥ 3 we have

bf (1) = 1, bf (2) = 3, bf (3) = 4, bf (4) = 5, bf (5) = 6.

We will show that if n > max{3, Bj} then bf (n) is a square-free number.

Suppose the contrary bf (n) = p2 l > 7, where l ∈ N and p is a prime number. If p = 2 then l ≥ 2 we put

a = 2l − 2, b = 2 and get bf (n)|2j ((l − 1)j + 1), since j odd, j ≥ 3. Hence a + b = 2l = 1
2 bf (n) < 1

2 (1 + 1
2 )n < n

and bf (n)|aj + bj , thus we get contradiction with de�nition of bf (n).

If p > 2 then we put a = pl, b = pl and get bf (n)|aj + bj , since j ≥ 3. But a + b = 2pl = 2
p
bf (n) < 2

p
(1 + 1

2 )n ≤ n,

thus we get contradiction with de�nition of bf (n).
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Theorems

Conjecture 3.18

We �x some odd integer j ≥ 3. For the function
f : N2 3 (n1, n2)→ n1

j + n2
j ∈ N, if a natural number n ≥ 4 then

bf (n) = min{m : m > n, m square − free, (j , ϕ(m)) = 1} (3)

= min {m : m > n, polynomial x j permutes elements of Z/mZ}.

Remark 3.19

For proof of Conjecture 3.18 in the case j = 3, see Theorem 3.10.
The author found that the equation (3) holds for j ∈ {5, 7, 9, 11, 13} and
n ∈ {4, 5, . . . , 200}.
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Modi�cation

Consider an arbitrary function f : Nm → N and the set

Vn = {f (n1, n2, . . . , nm) : n1 + n2 + . . .+ nm ≤ n}.

Cancel in N all numbers d ∈ N such that d2 is a divisor of some number in Vn

and de�ne b
(2)
f (n) as the least non-canceled number.
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Modi�cation

f (n1, n2) = n1
2 + n2

2 and b
(2)
f

Denote by F the set of all positive integers which are the products of prime
numbers 6≡ 1 (mod 4).
Let (qs)

∞
s=1 be the increasing sequence of all elements of F .

In particular, q1 = 1, which corresponds to the empty product.

F = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 19, 21, 22, 23, 24, 27, 28, 31, . . .}.

Theorem 4.1

Let f : N× N→ N, f (n1, n2) = n1
2 + n2

2. We have b
(2)
f (1) = 1 and for n ≥ 2

b
(2)
f (n) = qs , if 2qs−1 ≤ n < 2qs ,

where s ≥ 2.
Hence, the set {b(2)f (n) : n ∈ N} is equal to F .

[9] A. Tomski, M. Zakarczemny, On some cancellation algorithms, NNTDM, 23 (2017), pp. 101-114.
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Modi�cation

f (n1, n2, n3) = n1
2 + n2

2 + n3
2 and b

(2)
f

Theorem 4.2

For the function f : N3 → N given by the formula

f (n1, n2, n3) = n1
2 + n2

2 + n3
2, we have b

(2)
f (1) = 1, b

(2)
f (2) = 1, and for n ≥ 3

b
(2)
f (n) ≤ 2dlog2

n
3e.

Remark 4.3

We conjecture that for any n ≥ 3 we have b
(2)
f

(n) = 2

⌈
log2

n
3

⌉
.

[9] A. Tomski, M. Zakarczemny, On some cancellation algorithms, NNTDM, 23 (2017), pp. 101-114.
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Open problems

f (n1, n2, n3) = n1
3 + n2

3 + n3
3

Problem 5.1

For the function f : N3 → N given by the formula
f (n1, n2, n3) = n1

3 + n2
3 + n3

3. We have

n 1, 2 3 4, 5 6, . . . , 10 11, . . . , 17 18, 19 20, . . . , 24 25, 26 27, 28, 29 30, . . . , 34
bf (n) 1 2 4 7 13 52 65 117 156 169

.

n 35, 36, 37 38, . . . , 41 42, . . . , 48 49, . . . , 57 58, 59 60, 61, 62 63, . . . , 66 67, . . . , 73
bf (n) 241 260 301 481 802 903 973 1118

.

Find and prove an explicit formula for the above sequence.
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Open problems

f (n1, n2, n3, n4, n5) = n1
2 + n2

2 + n3
2 + n4

2 + n5
2

Problem 5.2

For the function f : N5 → N given by the formula

f (n1, n2, n3, n4, n5) = n1
2 + n2

2 + n3
2 + n4

2 + n5
2. We have

n 1, 2, 3, 4 5 6, 7, 8 9 10 11 12, 13, 14, 15 16 17 18, 19, 20 21 22 23, 24
bf (n) 1 2 3 6 9 15 33 73 90 105 132 153 193

,

n 25 26 27 28 29 30 31, 32 33 34 35, 36 37 38, 39, 40 41 42

bf (n) 210 225 288 297 318 321 353 432 441 513 570 585 732 793
.

n 43, 44, 45, 46 47, 48 49, 50 51 52 53, 54 55, 56 57 58 59, 60 61

bf (n) 825 1065 1185 1212 1257 1425 1473 1500 1617 1737 1860
.

Find and prove an explicit formula for the above sequence.

The only natural numbers that are not the sums of the squares of �ve natural numbers are the numbers
1, 2, 3, 4, 6, 7, 9, 10, 12, 15, 18, 33.

Maciej Zakarczemny (PK) Discriminator July 7, 2017 32 / 36



Open problems

f (n1, n2, n3) =
n1(n1+1)

2
+ n2(n2+1)

2
+ n3(n3+1)

2
, sum of three triangular numbers

Problem 5.3

For the function f : N3 → N given by the formula

f (n1, n2, n3) =
n1(n1+1)

2
+ n2(n2+1)

2
+ n3(n3+1)

2
. We have

n 1, 2 3, 4 5 6, 7, 8 9, 10 11, 12, 13, 14 15 16 17 18, 19
bf (n) 1 2 6 11 20 29 53 69 76 81

.

n 20 21 22 23, 24 25 26, 27 28 29, 30 31, 32, 33 34

bf (n) 105 106 110 119 146 179 188 218 254 272
.

Find and prove an explicit formula for the above sequence.

Gauss was the �rst to prove that every natural number which is not of the form 4l (8k + 7), k and l being
non-negative integers, is the sum of the squares of three integers.
The theorem of Gauss implies a theorem (�rst formulated by Fermat) stating that any natural number is the sum of
three or fewer triangular numbers.
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Open problems

f (t) = Ft , the Fibonacci numbers

Problem 5.4

For the function f : N→ N given by the formula f (t) = Ft . We have

n 1, 2 3 4, 5 6, . . . , 11 12, 13, 14 15, . . . , 23 24, . . . , 29 30, . . . , 35 36, . . . , 43 44

bf (n) 2 3 4 6 10 14 20 27 30 43
.

we recall that, in this case:

For a given n ≥ 1, Dn is the set of all divisors of all numbers F1, F2, F3, . . . , Fn.
For n ≥ 1 the least number in the set N \ Dn we denote by bf (n).

For all n ≥ 1 we have that n|F1F2 · . . . · Fn2 , hence bf (n
2) ≥ n.
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Thank you for your attention.
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