On some cancellation algorithms J

Maciej Zakarczemny

Cracow University of Technology, Poland

XXX Journées Arithmétiques

Caen

July 7, 2017

Maciej Zakarczemny (PK) Discriminator July 7, 2017 1/36



Introduction

Assume that g : N — N is injective mapping. Let:
Dg(n) :=min{m € N : g(1),g(2),..., g(n) aredistinct modulo m}. (1)
The function D, is commonly called the discriminator of the function g, because

it provides the least modulus which discriminates the successive values of the
function g.
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Introduction

The problem first appears in the context of the computation of square roots of
a long sequence of integers.

Arnold, Benkoski, and McCabe [1] defined, for a natural number n, the smallest
natural number m such that 12,22, ..., n? are all distinct modulo m.

In this case, the value Dg(n) for n > 4 is the smallest m > 2n such that mis a
prime or twice a prime.

Bremser, Schumer, Washington [2] determined for each sufficiently large natural
number, the smallest positive integer m such that 1/, 2/, ...,/ are all
incongruent modulo m.

[1] L.K. Arnold, S.J. Benkoski and B.J. McCabe, The discriminator (a simple application of Bertrand’s postulate),
Amer. Math. Monthly (1985), 92, 275-277.
[2] P. S. Bremser, P.D. Schumer, L.C. Washington, A note on the incongruence of consecutive integers to a fixed

power, J. Number Theory (1990), 35, no. 1, 105-108.
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Introduction

Lately, the discriminators of various types of functions were considered by Zieve
[12], Sun [8], Moree and Zumalacarrequi [6], Haque and Shallit [4].

[4] S. Haque and J. Shallit Discriminators and k-regular sequences INTEGERS 16(2106), Paper A76.

[6] P. Moree and A. Zumalacarregui, Salajan’s conjecture on discriminating terms in an exponential sequence,
J. Number Theory 160(2016),646-665.

[8] Zhi-Wei Sun, On funtions taking only prime values, J. Number Theory 133(2013), 2794-2812.

[12] M. Zieve, A note on the discriminator, J. Number Theory 73(1998), 122-138.
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Introduction

There is also a slightly different definition of a discriminator in terms of
cancellations algorithms.

Instead of (1) Browkin and Cao also considered an arbitrary function
f: N x N — N with the set

An={f(n,m) :n +ny<n; n,ny €N}
They cancel from N all numbers from the set of divisors
D, = {d € N: d|m for some m € A,},

and define br(n) to be the least non-canceled number (see Browkin and Cao in
the paper [3]).

[3] J. Browkin, H-Q. Cao,Modifications of the Eratosthenes sieve, Colloq. Math. 135, (2014), pp. 127-138.
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Example

If

An = {(n +n2)® —n2® i ng +n2 < ng,mp € N}

2 2
Dp={d €N:3, nyeN, ngtmp<n dl(nm+n2)” —n2"}

and bg(n) is the least number in the set N\ D, then

AL =10

Dy =0 be(1) =1,
Az = {3}

Dy ={1,3} br(2) =2,
Az = {3,5,8}

D3 = {1,2,3,4,5,8} be(3) = 6,
A4 = {3,5,7,8,12,15}

Dg = {1,2,3,4,5,6,7,8,12,15} br(4) =9,
As = {3,5,7,8,9,12,15,16, 21, 24}

Ds = {1,2,3,4,5,6, 7 8,9,12, 15 16, 21,24} be(5) = 10,
As = {3,5,7,8,0,11, 12 15, 16 20, 21, 24, 25, 27, 32,35}

D¢ = {1,2,3,4,5,6,7,8,9, 10 11 12 15 16 20 21 24 27,32,35} bs(6) = 13,
A7 = {3,5,7,8,9,11, 12,13, 15, 16 20 21, 24, 25, 27 32,33, 35, 45, 48}

D7 ={1,2,3,4,5,6,7,8,9,10,11,12,13, 15, 16, 20, 21, 24, 25, 27, 32, 33, 35, 45, 48}

Note that A, = {g(s) — g(r) :
In this case f(ny, n2) = (n1 + n2

1<r<s<n}, whereg:N3r — r?

)2

€ N.
2 . e
— n3 and b¢(n) is equal to the discriminator D2 (n).

Hence for n > 4 we get that bs(n) is the smallest m > 2n such that m is a prime or twice a prime.
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Definition 2.1
Let f : N°* — N. We define for a natural number n.

bf(n) =

min{m € N: =(3p, n,....nen m|f(n,ne,...,n) A nm+ne+...+ns <n)}.

(2)

.
or in other words:
For a given n > 1, D, is the set of all divisors of all numbers f(n1, n2, ..., ns), where ny +n2 + ...+ ns < n.
The numbers in D, are cancelled, so the numbers in N\ D, remain non-cancelled.
For n > 1 the least non canceled number we denote by b¢(n).
y
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Remark 2.2

Note that, for a natural number n, the set
{meN: 3, . men mf(n,ne,....0s) A m+ny+...4+ns < n}
is finite, thus
{meN: =(3p; nsrneen M|f(n,n2,...,ns) Amp+n+...+ns<n)}

is not empty. Therefore by minimum principle bs(n) exists.
We also have br(1) =1if s > 1.
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Theorems

the factorial function

Theorem 3.1
For the function f : N> t — t! € N we get br(3) = 4 and

be(n) = min{m: m > n, misaprime},

if n#£3.

[10] A. Tomski, M. Zakarczemny, On some cancellation algorithms, Ill, article in preparation.
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Theorems

Theorem 3.2
For the function f : N> t — t(t + 1) € N we have

be(n) =min{m: m > n+1, m=p*, pisaprime, k € N}.

[9] A. Tomski, M. Zakarczemny, On some cancellation algorithms, NNTDM, 23 (2017), pp. 101-114.
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Theorems

Theorem 3.3
For the function f : N> t — t(t +2) € N we get br(1) =2 and

be(n) = min{m: m > n+2, m=p“orm=2p*, pisanodd prime, k € N},

ifn>1.

[9] A. Tomski, M. Zakarczemny, On some cancellation algorithms, NNTDM, 23 (2017), pp. 101-114.
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Theorems

Theorem 3.4
We fix some integer k > 2. For the function f : N > t — t* € N, we have

be(n) = min{m: m > n, misasquare — free}.

[9] A. Tomski, M. Zakarczemny, On some cancellation algorithms, NNTDM, 23 (2017), pp. 101-114.
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Theorems

Theorem 3.5
We fix some integer k > 1. For the function f : N 5 t — tk' € N we have that for

n>k
be(n) = min{m: m > n, (k,m) =1}

[10] A. Tomski, M. Zakarczemny, On some cancellation algorithms, 1], article in preparation.
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Theorems

Theorem 3.6

For the function f: N? > (ny, no,...,ns) — mny - ... - ng €N,
where s > 2, we have bg(n) =1, ifs>n>1.
For n > s we have

be(n) =min{m: m>n—s+1, misaprime}.

[10] A. Tomski, M. Zakarczemny, On some cancellation algorithms, Ill, article in preparation
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Theorems

Theorem 3.7

For the function f : N? > (ny, no) — ni2 + n? € N we have

bs(n) = min{m :2m > n+ 1, msquare — free product of primes =3 (mod 4)}.

[3] J. Browkin, H-Q. Cao, Modifications of the Eratosthenes sieve, Colloq. Math. 135, (2014), pp. 127-138.
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Theorems

Theorem 3.8

For the function f : N® > (ny, no, n3) — n1? 4 no? + n% € N we have
br(1) =1, be(2) =1, br(3) =2, be(4) = 4, be(5) = 4.

Moreover, for any integer s > 1 we have:

1) 1f2-25 < n<3-2% then 23 .25 < be(n) < 4,

2) If3-25<n<2-25"1 then /325 < be(n) <5451,

Hurwitz theorem

The only natural numbers n for which n? is not the sum of the squares of three natural numbers are the numbers
n=2"and n:5-2h,whereh:0,1,2,4...
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Theorems

Theorem 3.9

For the function
f:N*> (n,np,n3,n,) — m2 + m? +n3> + m? eN

we have
br(1) =1, be(2) =1, br(3) =1, be(4) = 3, br(5) = 3.
Moreover, for any integer s > 1 we have:
1) If3-25<n<4-25% then be(n) < 2%+
2) If4.25<n<3-25M then be(n) < 3-2%+1

[11] M. Zakarczemny, On some cancellation algorithms II, CzT, 5 (2017) 97-103

Maciej Zakarczemny (PK) Discriminator July 7, 2017 17 / 36



Theorems

Theorem 3.10

For the function f : N?2 3 (nq, ny) — ni3 + ny® € N we have
b

be(n) = min{m : m > n, msquare — free, (3, p(m)) = 1}.

[9] A. Tomski, M. Zakarczemny, On some cancellation algorithms, NNTDM, 23 (2017), pp. 101-114.
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Theorems

Lemma 3.11

For a natural number m > 4 and an odd number j > 3 the following statements
are equivalent

(i) Forall a,b € N such that a+b<m—1 we have m[& + b/,
(ii) (j,e(m)) =1 and m is square-free,

(i) »/ is a permutation polynomial of the finite ring 7./ mZ..
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Theorems

It follows from [2,p.32] that (ii) and (iii) are equivalent.
Assume that (ii) holds. If there exist a, b € N such that a+ b < m — 1 and a + V=0 (mod m), then
4 = (m— b)j (mod m)and 1 < a < m— b < m— 1. We obtain a contradiction with (iii). Hence (ii) implies (/).

On the other hand assume that (i) holds. Thenforalla,pe N, 1 <a<b<m-—1
we have following relations mf 2/ + (m — bY andmf 2 — b/.

Hence lj, 2j, e, (m = l)j are distinct modulo m.

We will show that m is square-free. Suppose the contrary, we put

m= pzl > 4, where | € N and p is a prime number. If we take

_ pl—p if p=2
A= pl if p>3

thena+b<m—1anda + b =0 (mod m), thus we get contradiction with (/).
Consequently m is a square-free number.

Therefore &/ = 0 (mod m) implies a = 0 (mod m).

Thus 0/, 1/, ..., (m — 1) are distinct modulo m and (iii) holds, hence (ii) holds also.

[2] P. S. Bremser, P.D. Schumer, L.C. Washington, A note on the incongruence of consecutive integers to a fixed

power, J. Number Theory (1990), 35, no. 1, 105-108.
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Theorems

Theorem 3.12

We fix some odd integer j > 3. For the function
f N2> (ng,n) — n/ + ny) € N we have

n < be(n) < min{m: m > n, msquare — free, (j, p(m)) = 1}.
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Theorems

Proof.

The first inequality follows from the fact that if j is an odd integer then (ny + n2)|n11 + n2

Indeed, for a natural number 2 < h < n, we take ny =1, np = h — 1. Hence h|n1/ + npt and ng+n=h<
Therefore his canceled. Hence bf( ) > n.

For the proof of the second inequality assume that m > n, m is square-free number, (j, ¢(m)) = 1, then by

lemma 3.11 for all ny, na € N such that ng + np < n < m— 1 we have m/fn{l + n/2 Hence bf(n) < m and theorem
follows. O
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Theorems

Definition 3.13

For j odd, let B; be the smallest integer such that for all n > B; there exists
a prime p with (_] p—1)=1and p € (n,3n).

Remark 3.14

By the Prime Number Theorem for arithmetic progressions there is always a prime
p=2 (mod j) in (n,3n) for n sufficiently large, see [2].

[2] P. S. Bremser, P.D. Schumer, L.C. Washington, A note on the incongruence of consecutive integers to a fixed

power, J. Number Theory (1990), 35, no. 1, 105-108.
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Theorems

Definition 3.15

For j odd, let Q; be the set of all square-free positive integers m such that

U p(m)) = 1.

Lemma 3.16

For all n > B; there exists a number q € Q; such that q € (n, 3n).

Proof.
By definition of B; and Q;. O
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Theorems

Theorem 3.17

We fix some odd integer j > 3. For the function
f:N25 (m,np) = m’ + ny € N and for all n > B; we have

n < be(n) < %n.

Moreover, if n > max{3, B;} then b¢(n) is a square-free number.
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Theorems

Proof.

By lemma 3.16, if n > B; we get
min {m: m > n, msquare — free, (j, p(m)) =1} < 3n.

Thus by theorem 3.12 we obtain n < bs(n) < %n.
By the straightforward verification for all odd j > 3 we have

be(1) =1, be(2) = 3, be(3) = 4, be(4) =5, br(5) = 6.

We will show that if n > max{3, B;} then b¢(n) is a square-free number.

Suppose the contrary be(n) = pzl > 7, where | € N and p is a prime number. If p = 2 then /| > 2 we put
a=2/—2, b=2 and get be(n)|2/((/ — 1)/ + 1), since j odd, j > 3. Hence a+ b =2/ = %bf(ﬂ) < %(1 + %)n <n
and b(n)|a/ + b/, thus we get contradiction with definition of bs(n).

If p > 2 then we put a = p/, b = pl and get b,r(n)|aj + b, since j > 3. But a+ b=2pl = %bf(n) < %(1 + %)n <n,

thus we get contradiction with definition of bs(n). ]
y
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Theorems

Conjecture 3.18
We fix some odd integer j > 3. For the function
f: N2> (ng,n) — n/ + n) € N, if a natural number n > 4 then
be(n) = min{m : m > n, msquare — free, (j, ¢(m)) =1} (3)
=min{m: m > n, polynomial x) permutes elements of 7./mZ}.
Remark 3.19
For proof of Conjecture 3.18 in the case j = 3, see Theorem 3.10.
The author found that the equation (3) holds for j € {5,7,9,11,13} and
ne {4,5,...,200}
Discriminator July 7, 2017 27 / 36



Consider an arbitrary function f : N™ — N and the set
Vo ={f(n,na,....,nm): nmp+n+...4+n, <n}

Cancel in N all numbers d € N such that d? is a divisor of some number in V,
and define bgz)(n) as the least non-canceled number.
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2
f(ny, ) = ni? + ny?and b,(r )

Denote by F the set of all positive integers which are the products of prime
numbers # 1 (mod 4).

Let (gs)S2, be the increasing sequence of all elements of F.

In particular, g; = 1, which corresponds to the empty product.

F=1{1,2,3,4,6,7,8,9,11,12, 14, 16, 18,19, 21,22, 23,24, 27,28,31,.. .}.
Theorem 4.1
Let f: N x N — N, f(ny, m) = m2 + m?. We have b?)(1) =1 and for n > 2
b;(fz)(n) = (s, if 2q,_1 < n < 2qs,

where s > 2.
Hence, the set {b,(f)(n) :n €N} s equal to F.

[9] A. Tomski, M. Zakarczemny, On some cancellation algorithms, NNTDM, 23 (2017), pp. 101-114-
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f(ny, n, m3) = ni? + mo? + n3?and b7(c2)

Theorem 4.2

For the function f : N3 — N given by the formula

F(ny, m, n3) = m?2 + m? + ns?, we have b2 (1) =1, b2 (2) =1, and for n > 3

b (n) < 2w 51,

Remark 4.3

n
We conjecture that for any n > 3 we have b,(,z)(n) = 2’-I°52 3-‘ .

[9] A. Tomski, M. Zakarczemny, On some cancellation algorithms, NNTDM, 23 (2017), pp. 101-114.
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Open problems

_ .3 g 3
f(ny, na,n3) = n® + my® + n3

Problem 5.1

For the function f : N3 — N given by the formula
f(n1,n2,n3) = n3 + np® + n33. We have

[n [1,2][3[45]6,...,10 | 11,...,17 | 18,19 | 20,...,24 | 25,26 | 27,28,29 | 30,...,34 |
[be(m [ 1 T2 & | 7 | 13 [ 52 ] 65 [ 117 | 156 | 169 i
[ n ]3536,37 [ 38,..., 41 [ 42,.. ., 48 [ 49,...,57 | 58,59 [ 60,61,62 [ 63,..., 66 | 67,..., 73 ]
[br(n) | 241 | 260 | 301 | 481 | 802 | 003 | or3 | 1118 |
Find and prove an explicit formula for the above sequence.
v
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Open problems

_ .2 2 2 2 2
f(ny, m, n3, Na, ns) = M=+ ny® + n3* + Ny* + ns

Problem 5.2

For the function f : N® — N given by the formula
f(ny,n2,n3,nq,n5) = N2 + np? 4+ n3? + ng? + ns®. We have

[ n [1,2,34]5]6,7,8 9] 10 11 | 12,13,14,15 | 16 | 17 | 18,19,20 | 21 | 22 | 23,24 |
[Be(n) | 1 [2] 3 6] 9 |15 ] 33 [ 7390 | 105 [ 132 | 1563 | 193 |
[ n [ 25 [ 26 [ 27 | 28 | 29 | 30 | 31,32 | 33 | 34 | 35,36 | 37 | 38,39,40 | 41 | 42 |
[ be(n) [ 210 | 225 | 288 | 297 | 318 | 321 | 353 | 432 | 441 | 513 [ 570 | 585 [ 7327 ] 793
[ n [43,44,45,46 | 47,48 [ 49,50 | 51 | 52 [ 53,54 | 55,56 | 57 | 58 | 59,60 | 61 | |
[ be(n) | 825 | 1065 | 1185 | 1212 | 1257 | 1425 | 1473 [ 1500 | 1617 | 1737 | 1860 | |

Find and prove an explicit formula for the above sequence.

The only natural numbers that are not the sums of the squares of five natural numbers are the numbers
1,2,3,4,6,7,9, 10,12, 15, 18, 33. J
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Open problems

f(ny,na, n3) = ”‘(”2‘“) + ”2("22+1) + "3("23+l)., sum of three triangular numbers

Problem 5.3

For the function f : N3 — N given by the formula
f(ni,m, ng) = )y me(metl) 4 ms(ns4) e pave

[6,7,8] 09,10 | 11,12,13,14 | 15 | 16 | 17 | 18,19 |

[n T1,273,4]
[ 11 T 20 ] 29 [ 5369 [76 | 81 |

(e[ T [ 2]

oo

[ n T 20 [ 21 [ 22 [23,24 ] 25 [ 26,27 | 28 | 29,30 [ 31,32,33 [ 34 |
[Be(n) [ 105 | 106 | 110 | 119 | 146 | 179 | 188 | 218 | 254 | 272 |

Find and prove an explicit formula for the above sequence.

Gauss was the first to prove that every natural number which is not of the form 4’(81( +7), k and | being

non-negative integers, is the sum of the squares of three integers.
The theorem of Gauss implies a theorem (first formulated by Fermat) stating that any natural number is the sum of

three or fewer triangular numbers.
v
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Open problems

f(t) = F;, the Fibonacci numbers

Problem 5.4

For the function f : N — N given by the formula f(t) = F;. We have

[ n [L,2[3[45]6,...,11 [12,13,14 | 15,...,23 [ 24,...,29 | 30,...,35 | 36,...,43 [ 44 |
[(br(m) | 2 [ 3] 4 | 6 | 10 | 14 20 27 | 30 |43 ]
y
we recall that, in this case:
For a given n > 1, D, is the set of all divisors of all numbers F1, F2, F3,..., Fp.
For n > 1 the least number in the set N\ D, we denote by bs(n).
y
For all n > 1 we have that n|F1Fz - ... F 2, hence be(n?) > n. J
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Thank you for your attention.
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