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Introduction

Assume that g : N→ N is some special injective mapping.
Let:

Dg (n) := min{m ∈ N : g(1), g(2), . . . , g(n) are distinct modulo m} (1)

The function Dg is commonly called the discriminator of the function g .

Remark: By N we denote the set of positive integers.
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Introduction

Arnold, Benkoski, and McCabe [1] de�ned, for a natural number n, the smallest
natural number m such that 12, 22, . . . , n2 are all distinct modulo m.

In this case, the value Dg (n) for n > 4 is the smallest m ≥ 2n such that m is a
prime or twice a prime.

[1] L.K. Arnold, S.J. Benkoski and B.J. McCabe, The discriminator (a simple application of Bertrand's postulate),

Amer. Math. Monthly (1985), 92, 275-277.
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Introduction

Later authors tried to generalize it to the cyclic polynomials g(x) = x j , where j is
any natural number, see [2],

Moree and Mullen [8] give the asymptotic characterization of Dgj (x,a)(n), where

gj(x , a) =

b j
2c∑

i=0

j
j−i

(
j − i

i

)
(−a)ix j−2i ∈ Z[x ]

is the Dickson polynomial of degree j ≥ 1 and parameter a ∈ Z.

[2] P. S. Bremser, P.D. Schumer, L.C. Washington, A note on the incongruence of consecutive integers to a �xed

power, J. Number Theory (1990), 35, no. 1, 105-108.

[8] P. Moree and G. L. Mullen, Dickson polynomial discriminators, J. Number Theory 59 (1996), 88-105.
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Introduction

The characterization of the discriminator for permutation polynomials was made
in papers [6] and [11].

Let R be a �nite commutative ring. A polynomial f ∈ R[x] is said to be a permutation polynomial of R if it
permutes the elements of R under the evaluation mapping x 7→ f (x).
In paper [6] author give conditions for f to have an asymptotic characterization of the form

Df (n) = min{k ≥ n : f permutes Z/kZ}.

[6] P. Moree, The incongruence of consecutive values of polynomials, Finite Fields Appl. 2 (1996), no. 3, 321-335.

[11] M.Zieve, A note on the discriminator, J. Number Theory 73 (1998), no. 1, 122-138.
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Introduction

Here we generalize the notion of discriminator and compute some of its values
using methods from the elementary number theory.

Browkin and Cao in the paper [3] stated (1) equivalently in terms of the following
cancellation algorithm.

For n ≥ 2 de�ne the set

An := {g(s)− g(r) : 1 ≤ r < s ≤ n} = {g(k + l)− g(l) : k + l ≤ n; k, l ∈ N}.

Cancel in N all numbers from the set {d ∈ N : d |a for some a ∈ An},
then Dg (n) is the least non-cancelled number.

[3] J. Browkin, H-Q. Cao, Modi�cations of the Eratosthenes sieve, Colloq. Math. 135, (2014), pp. 127-138.
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Introduction

More generally, we consider an arbitrary function f : Nm → N, m ≥ 1 and the set

Vn = {f (n1, n2, . . . , nm) : n1 + n2 + . . .+ nm ≤ n}.

De�nition

We de�ne bf (n) as the least number in the set

N \ {d ∈ N : d |a for some a ∈ Vn},

being called the set of all non-cancelled numbers.
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Introduction

Example

If Dn = {d ∈ N : ∃n1,n2∈N, n1+n2≤n d |(n1 + n2)
2 − n2

2} and
bf (n) is the least number in the set N \ Dn then

V1 = ∅
D1 = ∅ bf (1) = 1,
V2 = {3}
D2 = {1, 3} bf (2) = 2,
V3 = {3, 5, 8}
D3 = {1, 2, 3, 4, 5, 8} bf (3) = 6,
V4 = {3, 5, 7, 8, 12, 15}
D4 = {1, 2, 3, 4, 5, 6, 7, 8, 12, 15} bf (4) = 9,
V5 = {3, 5, 7, 8, 9, 12, 15, 16, 21, 24}
D5 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 21, 24} bf (5) = 10,
V6 = {3, 5, 7, 8, 9, 11, 12, 15, 16, 20, 21, 24, 25, 27, 32, 35}
D6 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 20, 21, 24, 27, 32, 35} bf (6) = 13,
V7 = {3, 5, 7, 8, 9, 11, 12, 13, 15, 16, 20, 21, 24, 25, 27, 32, 33, 35, 45, 48}
D7 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 20, 21, 24, 25, 27, 32, 33, 35, 45, 48} bf (7) = 14,
. . . . . .

Note that Vn = {g(s)− g(r) : 1 ≤ r < s ≤ n}, where g : N 3 r → r2 ∈ N.
In this case f (n1, n2) = (n1 + n2)

2 − n21 and bf (n) is equal to the discriminator Dr2 (n).

Hence for n > 4 we get that bf (n) is the smallest m ≥ 2n such that m is a prime or twice a prime.
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Introduction

Our aim is to describe the set {bf (n) : n ∈ N} of the least non-cancelled numbers
for some special cases of the function f .

Such modi�cations of the Eratosthenes sieve and the discriminator are of certain interest, since they develop a way

to characterize the primes or a numbers of some special kind, for example those squarefree numbers

which are the products of primes from some arithmetic progression.

The authors of [3] gave some details for the function f (k , l) = k2 + l2 and they
obtained that the set {bf (n) : n ≥ 2} is equal to Q \ {1}, where Q is the set of
all squarefree positive integers, which are the products
of prime numbers ≡ 3 (mod 4).

Q = {1, 3, 7, 11, 19, 21, 23, 31, 33, 43, 47, 57, 59, . . .}.

[3] J. Browkin, H-Q. Cao, Modi�cations of the Eratosthenes sieve, Colloq. Math. 135, (2014), pp. 127-138.
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f (n) = nk for some natural k ≥ 2

Let (rs)
∞
s=1 be the increasing sequence of all positive squarefree numbers.

Theorem

Let f : N→ N, f (n) = nk , where k ≥ 2 is a natural number.

If s > 1 and rs−1 ≤ n < rs then

bf (n) = rs .

Hence, {bf (n) : n ∈ N} is the set of all squarefree numbers

with the exception of 1.
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Qt

Let t be a squarefree natural number.
We de�ne Qt as the set of all natural numbers in the form apk ,
where p is a prime number which does not divide t;
a is a positive squarefree number which divide t
and k is the non-negative integer.

Example

Q1 = {1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, . . .},
Q2 = {1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, . . .},
Q3 = {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 17, 19, . . .},
Q5 = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, . . .},
Q6 = {1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, . . .}.
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f (n) = n(n + t) for some positive squarefree number t

We �x t. Let (qs)
∞
s=1 be the increasing sequence of all elements of Qt .

Theorem

Let f : N→ N, f (n) = n(n + t).
For n ∈ N, where n ≥ t2 − t we de�ne s > 1 such that

qs−1 ≤ n + t ≤ qs − 1. (2)

Then bf (n) = qs and

{bf (n) : n ≥ t2 − t, n ∈ N} = {qs ∈ Qt : qs > max{t2, t + 1}, s > 1}.
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f (n) = n(n + 1) or f (n) = n(n + 2)

Remark

If we take t = 1, then Q1 = {pk : p is a prime number , k ≥ 0} and

{bf (n) : n ∈ N} = {pk : p is a prime number , k ≥ 0}\{1, 2}

= {3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, . . .}.

Remark

If we take t = 2, then Q2 = {pk : k ≥ 0} ∪ {2pk : k ≥ 0} and

{bf (n) : n ≥ 2, n ∈ N} = ({pk : k ≥ 0} ∪ {2pk : k ≥ 0})\{1, 2, 3}

= {5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, . . .}.

where p is an odd prime number.
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f (n1, n2) = n1n2

Our aim in this theorem is to �nd an algorithm which gives
only prime numbers ps .

Theorem

Let f : N× N→ N, f (n1, n2) = n1n2. We have

bf (1) = 1, bf (2) = 2

and if n > 2 then bf (n) = ps , where s > 1 is chosen in the way that

ps−1 < n ≤ ps .

Remark

The set {bf (n) : n > 1, n ∈ N} is the set of all prime numbers.

We give a short and simple proof of the above theorem.
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Proof.
By a straightforward veri�cation we get

bf (1) = 1, bf (2) = 2.

Let n > 2. We assume that ps−1 < n ≤ ps , s > 1.
We have to prove that ps is non-cancelled, but any natural number h < ps is cancelled.
First, let ps |ab for some a, b ∈ N. Thus ps |a or ps |b and a + b > ps ≥ n. Therefore, a number ps is non-cancelled.
We assume now that h < ps . To show that h is cancelled, we need to consider two cases separately.

a) If h = pj , where j ∈ N and j ≤ s − 1, then we take a = 1, b = pj and get h|ab with
a + b = 1 + pj ≤ 1 + ps−1 ≤ n, thus such h is cancelled.

b) If h = kl, where k, l > 1, k, l ∈ N, we have (k − 2)(l − 2) ≥ 0, hence k + l ≤ 1
2 kl + 2. We take a = k, b = l and

get h|ab. From the Bertrand's Postulate (Chebyshev's theorem) we have ps < 2ps−1 for s > 1. Hence,

a + b = k + l ≤ 1
2 kl + 2 = 1

2 h + 2 ≤ 1
2 (ps − 1) + 2 = 1

2 (ps + 1) + 1 ≤ ps−1 + 1 ≤ n,

thus such h is cancelled.

To summarize, we have shown that every h < ps is cancelled.
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f (n1, n2) = n31 + n32

We denote by T the set of all squarefree positive integers being the products of
arbitrarily many prime numbers, which are not congruent to 1 modulo 6.

Let (ts)
∞
s=1 be the increasing sequence of all elements of T .

We notice that t1 = 1, which corresponds to the empty product.

T = {1, 2, 3, 5, 6, 10, 11, 15, 17, 22, . . .}.
(In another words t ∈ T if t is squarefree positive integer and (3, ϕ(t)) = 1.).

Furthermore ϕ(k) denotes Euler's totient function and (a, b) denotes the greatest common divisor of a and b.

Theorem

Let f : N× N→ N, f (n1, n2) = n1
3 + n2

3. We have

bf (1) = 1, bf (2) = 3, bf (3) = 4,

bf (n) = ts if n ≥ 4 and s is chosen in the way that

ts−1 ≤ n < ts . (3)
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f (n1, n2) = nj1 + nj2

Theorem

For j > 1 odd, let f : N× N→ N, f (n1, n2) = n1
j + n2

j . Then

bf (n) ≤ min{k : k > n, k is squarefree, (j , ϕ(k)) = 1}.

Remark
Let j > 1 be an odd number. We conjecture that for su�ciently large n ≥ 4 we have

bf (n) = min{k : k > n, k is squarefree, (j, ϕ(k)) = 1}

.
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f (n1, n2, n3) = n1
2 + n2

2 + n3
2

Theorem

For the function f : N3 → N given by the formula

f (n1, n2, n3) = n1
2 + n2

2 + n3
2, we have bf (1) = bf (2) = 1, bf (3) = 2

and for any integer s ≥ 1 we obtain:

1) If 2 · 2s ≤ n < 3 · 2s , then bf (n) ≤ 4s ,

2) If 3 · 2s ≤ n < 2 · 2s+1, then bf (n) ≤ 5 · 4s−1.

Remark
We conjecture that for any integer s ≥ 1:

1) If 2 · 2s ≤ n < 3 · 2s , then bf (n) = 4s ,

2) If 3 · 2s ≤ n < 2 · 2s+1, then bf (n) = 5 · 4s−1.
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Modi�cation

Consider an arbitrary function f : Nm → N and the set

Vn = {f (n1, n2, . . . , nm) : n1 + n2 + . . .+ nm ≤ n}.

Cancel in N all numbers d ∈ N such that d2 is a divisor of some number in Vn

and de�ne b
(2)
f (n) as the least non-canceled number.
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Modi�cation

f (n1, n2) = n1
2 + n2

2 and b
(2)
f

Denote by F the set of all positive integers which are the products of prime
numbers 6≡ 1 (mod 4).
Let (qs)

∞
s=1 be the increasing sequence of all elements of F .

In particular, q1 = 1, which corresponds to the empty product.

F = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 19, 21, 22, 23, 24, 27, 28, 31, . . .}.

Theorem

Let f : N× N→ N, f (n1, n2) = n1
2 + n2

2. We have b
(2)
f (1) = 1 and for n ≥ 2

b
(2)
f (n) = qs , if 2qs−1 ≤ n < 2qs ,

where s ≥ 2.
Hence, the set {b(2)f (n) : n ∈ N} is equal to F .
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Modi�cation

f (n1, n2, n3) = n1
2 + n2

2 + n3
2 and b

(2)
f

Theorem

For the function f : N3 → N given by the formula

f (n1, n2, n3) = n1
2 + n2

2 + n3
2, we have b

(2)
f (1) = 1, b

(2)
f (2) = 1, and for n ≥ 3

b
(2)
f (n) ≤ 2dlog2

n
3e.

Remark

We conjecture that for any n ≥ 3 we have b
(2)
f

(n) = 2

⌈
log2

n
3

⌉
.
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Open problems

f (n1, n2, n3) = n1
3 + n2

3 + n3
3

Problem

For the function f : N3 → N given by the formula
f (n1, n2, n3) = n1

3 + n2
3 + n3

3. We have

n 1, 2 3 4, 5 6, . . . , 10 11, . . . , 17 18, 19 20, . . . , 24 25, 26 27, 28, 29 30, . . . , 34
bf (n) 1 2 4 7 13 52 65 117 156 169

.

n 35, 36, 37 38, . . . , 41 42, . . . , 48 49, . . . , 57 58, 59 60, 61, 62 63, . . . , 66 67, . . . , 73
bf (n) 241 260 301 481 802 903 973 1118

.

Find and prove an explicit formula for the above sequence.

First remark: Unfortunately, it is not always easy to come up with explicit formulas, when all you have

is a list of the terms.

Second remark: Can you prove the formula you conjectured?
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Open problems

f (n1, n2, n3, n4) = n1
2 + n2

2 + n3
2 + n4

2

Problem

For the function f : N4 → N given by the formula
f (n1, n2, n3, n4) = n1

2 + n2
2 + n3

2 + n4
2. We have

n 1, 2, 3 4, 5 6, 7 8, 9 10, 11 12, . . . , 15 16 17, . . . , 23
bf (n) 1 3 8 17 24 32 89 96

.

n 24, . . . , 31 32, . . . , 47 48, . . . , 63
bf (n) 128 384 512

.

We conjecture that for any integer s ≥ 3:

1) If 3 · 2s ≤ n < 4 · 2s , then bf (n) = 2 · 4s ,

2) If 4 · 2s ≤ n < 3 · 2s+1, then bf (n) = 6 · 4s .
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Open problems

f (n1, n2, n3, n4, n5) = n1
2 + n2

2 + n3
2 + n4

2 + n5
2

Problem

For the function f : N5 → N given by the formula

f (n1, n2, n3, n4, n5) = n1
2 + n2

2 + n3
2 + n4

2 + n5
2. We have

n 1, 2, 3, 4 5 6, 7, 8 9 10 11 12, 13, 14, 15 16 17 18, 19, 20 21 22 23, 24
bf (n) 1 2 3 6 9 15 33 73 90 105 132 153 193

,

n 25 26 27 28 29 30 31, 32 33 34 35, 36 37 38, 39, 40 41 42

bf (n) 210 225 288 297 318 321 353 432 441 513 570 585 732 793
.

n 43, 44, 45, 46 47, 48 49, 50 51 52 53, 54 55, 56 57 58 59, 60 61

bf (n) 825 1065 1185 1212 1257 1425 1473 1500 1617 1737 1860
.

Find and prove an explicit formula for the above sequence.
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Open problems

f (n1, n2, n3) =
n1(n1+1)

2
+ n2(n2+1)

2
+ n3(n3+1)

2
, sum of three triangular numbers

Problem

For the function f : N3 → N given by the formula

f (n1, n2, n3) =
n1(n1+1)

2
+ n2(n2+1)

2
+ n3(n3+1)

2
. We have

n 1, 2 3, 4 5 6, 7, 8 9, 10 11, . . . , 14 15 16 17 18, 19
bf (n) 1 2 6 11 20 29 53 69 76 81

.

n 20 21 22 23, 24 25 26, 27 28 29, 30 31, 32, 33 34

bf (n) 105 106 110 119 146 179 188 218 254 272
.

Find and prove an explicit formula for the above sequence.
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