On some cancellation algorithms

Maciej Zakarczemny

Cracow University of Technology, Poland

Conference on Rings and Polynomials

Graz

July 05, 2016

Assume that $g: \mathbb{N} \rightarrow \mathbb{N}$ is some special injective mapping. Let:

$$
\begin{equation*}
D_{g}(n):=\min \{m \in \mathbb{N}: g(1), g(2), \ldots, g(n) \text { are distinct modulo } m\} \tag{1}
\end{equation*}
$$

The function D_{g} is commonly called the discriminator of the function g.

Arnold, Benkoski, and McCabe [1] defined, for a natural number n, the smallest natural number m such that $1^{2}, 2^{2}, \ldots, n^{2}$ are all distinct modulo m.

In this case, the value $D_{g}(n)$ for $n>4$ is the smallest $m \geq 2 n$ such that m is a prime or twice a prime.
[1] L.K. Arnold, S.J. Benkoski and B.J. McCabe, The discriminator (a simple application of Bertrand's postulate), Amer. Math. Monthly (1985), 92, 275-277.

Later authors tried to generalize it to the cyclic polynomials $g(x)=x^{j}$, where j is any natural number, see [2],

Moree and Mullen [8] give the asymptotic characterization of $D_{g_{j}(x, a)}(n)$, where

$$
g_{j}(x, a)=\sum_{i=0}^{\left\lfloor\frac{j}{2}\right\rfloor} \frac{j}{j-i}\binom{j-i}{i}(-a)^{i} x^{j-2 i} \in \mathbb{Z}[x]
$$

is the Dickson polynomial of degree $j \geq 1$ and parameter $a \in \mathbb{Z}$.
[2] P. S. Bremser, P.D. Schumer, L.C. Washington, A note on the incongruence of consecutive integers to a fixed power, J. Number Theory (1990), 35, no. 1, 105-108.
[8] P. Moree and G. L. Mullen, Dickson polynomial discriminators, J. Number Theory 59 (1996), 88-105.

The characterization of the discriminator for permutation polynomials was made in papers [6] and [11].

Let R be a finite commutative ring. A polynomial $f \in R[x]$ is said to be a permutation polynomial of R if it permutes the elements of R under the evaluation mapping $x \mapsto f(x)$.
In paper [6] author give conditions for f to have an asymptotic characterization of the form

$$
D_{f}(n)=\min \{k \geq n: f \text { permutes } \mathbb{Z} / k \mathbb{Z}\}
$$

[6] P. Moree, The incongruence of consecutive values of polynomials, Finite Fields Appl. 2 (1996), no. 3, 321 -335.
[11] M.Zieve, A note on the discriminator, J. Number Theory 73 (1998), no. 1, 122-138.

Here we generalize the notion of discriminator and compute some of its values using methods from the elementary number theory.

Browkin and Cao in the paper [3] stated (1) equivalently in terms of the following cancellation algorithm.

For $n \geq 2$ define the set

$$
A_{n}:=\{g(s)-g(r): 1 \leq r<s \leq n\}=\{g(k+I)-g(I): k+I \leq n ; k, I \in \mathbb{N}\} .
$$

Cancel in \mathbb{N} all numbers from the set $\left\{d \in \mathbb{N}: d \mid a\right.$ for some $\left.a \in A_{n}\right\}$, then $D_{g}(n)$ is the least non-cancelled number.
[3] J. Browkin, H-Q. Cao, Modifications of the Eratosthenes sieve, Colloq. Math. 135, (2014), pp. 127-138.

More generally, we consider an arbitrary function $f: \mathbb{N}^{m} \rightarrow \mathbb{N}, m \geq 1$ and the set

$$
V_{n}=\left\{f\left(n_{1}, n_{2}, \ldots, n_{m}\right): n_{1}+n_{2}+\ldots+n_{m} \leq n\right\} .
$$

Definition
We define $b_{f}(n)$ as the least number in the set

$$
\mathbb{N} \backslash\left\{d \in \mathbb{N}: d \mid a \text { for some } a \in V_{n}\right\}
$$

being called the set of all non-cancelled numbers.

Example

If $D_{n}=\left\{d \in \mathbb{N}: \exists n_{\mathbf{1}}, n_{\mathbf{2}} \in \mathbb{N}, n_{\mathbf{1}}+n_{\mathbf{2}} \leq n \quad d \mid\left(n_{1}+n_{2}\right)^{2}-n_{2}^{2}\right\}$ and $b_{f}(n)$ is the least number in the set $\mathbb{N} \backslash D_{n}$ then

$V_{\mathbf{1}}=\emptyset$	
$D_{\mathbf{1}}=\emptyset$	$b_{f}(\mathbf{1})=\mathbf{1}$,
$V_{\mathbf{2}}=\{3\}$	
$D_{\mathbf{2}}=\{1,3\}$	$b_{f}(2)=2$,
$V_{\mathbf{3}}=\{3,5,8\}$	
$D_{\mathbf{3}}=\{1,2,3,4,5,8\}$	$b_{f}(3)=6$,
$V_{\mathbf{4}}=\{3,5,7,8,12,15\}$	
$D_{\mathbf{4}}=\{1,2,3,4,5,6,7,8,12,15\}$	$b_{f}(4)=9$,
$V_{\mathbf{5}}=\{3,5,7,8,9,12,15,16,21,24\}$	
$D_{\mathbf{5}}=\{1,2,3,4,5,6,7,8,9,12,15,16,21,24\}$	$b_{f}(5)=10$,
$V_{\mathbf{6}}=\{3,5,7,8,9,11,12,15,16,20,21,24,25,27,32,35\}$	$b_{f}(6)=13$,
$D_{\mathbf{6}}=\{1,2,3,4,5,6,7,8,9,10,11,12,15,16,20,21,24,27,32,35\}$	$b_{f}(7)=14$,
$V_{\mathbf{7}}=\{3,5,7,8,9,11,12,13,15,16,20,21,24,25,27,32,33,35,45,48\}$	\cdots

Note that $V_{n}=\{g(s)-g(r): \mathbf{1} \leq r<s \leq n\}$, where $g: \mathbb{N} \ni r \rightarrow r^{2} \in \mathbb{N}$.
In this case $f\left(n_{1}, n_{2}\right)=\left(n_{1}+n_{2}\right)^{\mathbf{2}}-n_{1}^{2}$ and $b_{f}(n)$ is equal to the discriminator $D_{r^{2}}(n)$.
Hence for $n>4$ we get that $b_{f}(n)$ is the smallest $m \geq 2 n$ such that m is a prime or twice a prime.

Our aim is to describe the set $\left\{b_{f}(n): n \in \mathbb{N}\right\}$ of the least non-cancelled numbers for some special cases of the function f.

Such modifications of the Eratosthenes sieve and the discriminator are of certain interest, since they develop a way to characterize the primes or a numbers of some special kind, for example those squarefree numbers which are the products of primes from some arithmetic progression.

The authors of [3] gave some details for the function $f(k, I)=k^{2}+l^{2}$ and they obtained that the set $\left\{b_{f}(n): n \geq 2\right\}$ is equal to $Q \backslash\{1\}$, where Q is the set of all squarefree positive integers, which are the products of prime numbers $\equiv 3(\bmod 4)$.

$$
Q=\{1,3,7,11,19,21,23,31,33,43,47,57,59, \ldots\} .
$$

[3] J. Browkin, H-Q. Cao, Modifications of the Eratosthenes sieve, Colloq. Math. 135, (2014), pp. 127-138.

$f(n)=n^{k}$ for some natural $k \geq 2$

Let $\left(r_{s}\right)_{s=1}^{\infty}$ be the increasing sequence of all positive squarefree numbers.
Theorem
Let $f: \mathbb{N} \rightarrow \mathbb{N}, f(n)=n^{k}$, where $k \geq 2$ is a natural number.
If $s>1$ and $r_{s-1} \leq n<r_{s}$ then

$$
b_{f}(n)=r_{s} .
$$

Hence, $\left\{b_{f}(n): n \in \mathbb{N}\right\}$ is the set of all squarefree numbers with the exception of 1 .

Let t be a squarefree natural number.
We define Q_{t} as the set of all natural numbers in the form $a p^{k}$, where p is a prime number which does not divide t; a is a positive squarefree number which divide t and k is the non-negative integer.

Example

$$
\begin{aligned}
Q_{1} & =\{1,2,3,4,5,7,8,9,11,13,16,17,19, \ldots\}, \\
Q_{2} & =\{1,2,3,5,6,7,9,10,11,13,14,17,18,19, \ldots\}, \\
Q_{3} & =\{1,2,3,4,5,6,7,8,11,12,13,15,16,17,19, \ldots\}, \\
Q_{5} & =\{1,2,3,4,5,7,8,9,10,11,13,15,16,17,19, \ldots\}, \\
Q_{6} & =\{1,2,3,5,6,7,10,11,13,14,15,17,19, \ldots\} .
\end{aligned}
$$

$f(n)=n(n+t)$ for some positive squarefree number t

We fix t. Let $\left(q_{s}\right)_{s=1}^{\infty}$ be the increasing sequence of all elements of Q_{t}.
Theorem
Let $f: \mathbb{N} \rightarrow \mathbb{N}, f(n)=n(n+t)$.
For $n \in \mathbb{N}$, where $n \geq t^{2}-t$ we define $s>1$ such that

$$
\begin{equation*}
q_{s-1} \leq n+t \leq q_{s}-1 . \tag{2}
\end{equation*}
$$

Then $b_{f}(n)=q_{s}$ and

$$
\left\{b_{f}(n): n \geq t^{2}-t, n \in \mathbb{N}\right\}=\left\{q_{s} \in Q_{t}: q_{s}>\max \left\{t^{2}, t+1\right\}, s>1\right\} .
$$

$$
f(n)=n(n+1) \text { or } f(n)=n(n+2)
$$

Remark
If we take $t=1$, then $Q_{1}=\left\{p^{k}: p\right.$ is a prime number, $\left.k \geq 0\right\}$ and

$$
\begin{aligned}
\left\{b_{f}(n): n\right. & \in \mathbb{N}\}=\left\{p^{k}: p \text { is a prime number, } k \geq 0\right\} \backslash\{1,2\} \\
& =\{3,4,5,7,8,9,11,13,16,17,19, \ldots\} .
\end{aligned}
$$

Remark
If we take $t=2$, then $Q_{2}=\left\{p^{k}: k \geq 0\right\} \cup\left\{2 p^{k}: k \geq 0\right\}$ and

$$
\begin{gathered}
\left\{b_{f}(n): n \geq 2, n \in \mathbb{N}\right\}=\left(\left\{p^{k}: k \geq 0\right\} \cup\left\{2 p^{k}: k \geq 0\right\}\right) \backslash\{1,2,3\} \\
=\{5,6,7,9,10,11,13,14,17,18,19, \ldots\} .
\end{gathered}
$$

where p is an odd prime number.

$$
f\left(n_{1}, n_{2}\right)=n_{1} n_{2}
$$

Our aim in this theorem is to find an algorithm which gives only prime numbers p_{s}.

Theorem
Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}, f\left(n_{1}, n_{2}\right)=n_{1} n_{2}$. We have

$$
b_{f}(1)=1, b_{f}(2)=2
$$

and if $n>2$ then $b_{f}(n)=p_{s}$, where $s>1$ is chosen in the way that $p_{s-1}<n \leq p_{s}$.

Remark

The set $\left\{b_{f}(n): n>1, n \in \mathbb{N}\right\}$ is the set of all prime numbers.
We give a short and simple proof of the above theorem.

Proof.

By a straightforward verification we get

$$
b_{f}(\mathbf{1})=\mathbf{1}, b_{f}(2)=2 .
$$

Let $n>2$. We assume that $p_{s-1}<n \leq p_{s}, s>1$.
We have to prove that p_{s} is non-cancelled, but any natural number $h<p_{s}$ is cancelled.
First, let $p_{s} \mid a b$ for some $a, b \in \mathbb{N}$. Thus $p_{s} \mid a$ or $p_{s} \mid b$ and $a+b>p_{s} \geq n$. Therefore, a number p_{s} is non-cancelled. We assume now that $h<p_{s}$. To show that h is cancelled, we need to consider two cases separately.
a) If $h=p_{j}$, where $j \in \mathbb{N}$ and $j \leq s-\mathbf{1}$, then we take $a=1, b=p_{j}$ and get $h \mid a b$ with $a+b=\mathbf{1}+p_{j} \leq \mathbf{1}+p_{s-1} \leq n$, thus such h is cancelled.
b) If $h=k l$, where $k, I>1, k, l \in \mathbb{N}$, we have $(k-2)(I-2) \geq 0$, hence $k+I \leq \frac{1}{2} k I+2$. We take $a=k, b=l$ and get $h \mid a b$. From the Bertrand's Postulate (Chebyshev's theorem) we have $p_{s}<2 p_{s-1}$ for $s>1$. Hence,

$$
a+b=k+l \leq \frac{1}{2} k l+2=\frac{1}{2} h+2 \leq \frac{1}{2}\left(p_{s}-1\right)+2=\frac{1}{2}\left(p_{s}+1\right)+1 \leq p_{s-1}+1 \leq n,
$$

thus such h is cancelled.

To summarize, we have shown that every $h<p_{s}$ is cancelled.
$f\left(n_{1}, n_{2}\right)=n_{1}^{3}+n_{2}^{3}$
We denote by T the set of all squarefree positive integers being the products of arbitrarily many prime numbers, which are not congruent to 1 modulo 6 .

Let $\left(t_{s}\right)_{s=1}^{\infty}$ be the increasing sequence of all elements of T.
We notice that $t_{1}=1$, which corresponds to the empty product.

$$
T=\{1,2,3,5,6,10,11,15,17,22, \ldots\} .
$$

(In another words $t \in T$ if t is squarefree positive integer and (3, $\varphi(t)$) $=1$.).
Furthermore $\varphi(k)$ denotes Euler's totient function and (a, b) denotes the greatest common divisor of a and b.
Theorem
Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}, f\left(n_{1}, n_{2}\right)=n_{1}{ }^{3}+n_{2}{ }^{3}$. We have

$$
b_{f}(1)=1, b_{f}(2)=3, b_{f}(3)=4,
$$

$b_{f}(n)=t_{s}$ if $n \geq 4$ and s is chosen in the way that

$$
\begin{equation*}
t_{s-1} \leq n<t_{s} . \tag{3}
\end{equation*}
$$

$$
f\left(n_{1}, n_{2}\right)=n_{1}^{j}+n_{2}^{j}
$$

Theorem

For $j>1$ odd, let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}, f\left(n_{1}, n_{2}\right)=n_{1}{ }^{j}+n_{2}{ }^{j}$. Then

$$
b_{f}(n) \leq \min \{k: k>n, k \text { is squarefree, }(j, \varphi(k))=1\} .
$$

Remark

Let $j>1$ be an odd number. We conjecture that for sufficiently large $n \geq 4$ we have

$$
b_{f}(n)=\min \{k: k>n, k \text { is squarefree },(j, \varphi(k))=\mathbf{1}\}
$$

$$
f\left(n_{1}, n_{2}, n_{3}\right)=n_{1}^{2}+n_{2}^{2}+n_{3}^{2}
$$

Theorem

For the function $f: \mathbb{N}^{3} \rightarrow \mathbb{N}$ given by the formula $f\left(n_{1}, n_{2}, n_{3}\right)=n_{1}{ }^{2}+n_{2}^{2}+n_{3}^{2}$, we have $b_{f}(1)=b_{f}(2)=1, b_{f}(3)=2$ and for any integer $s \geq 1$ we obtain:

1) If $2 \cdot 2^{s} \leq n<3 \cdot 2^{s}$, then $b_{f}(n) \leq 4^{s}$,
2) If $3 \cdot 2^{s} \leq n<2 \cdot 2^{s+1}$, then $b_{f}(n) \leq 5 \cdot 4^{s-1}$.

Remark
We conjecture that for any integer $s \geq 1$:

1) If $2 \cdot 2^{s} \leq n<3 \cdot 2^{s}$, then $b_{f}(n)=4^{s}$,
2) If $3 \cdot 2^{s} \leq n<2 \cdot 2^{s+1}$, then $b_{f}(n)=5 \cdot 4^{s-1}$.

Consider an arbitrary function $f: \mathbb{N}^{m} \rightarrow \mathbb{N}$ and the set

$$
V_{n}=\left\{f\left(n_{1}, n_{2}, \ldots, n_{m}\right): n_{1}+n_{2}+\ldots+n_{m} \leq n\right\} .
$$

Cancel in \mathbb{N} all numbers $d \in \mathbb{N}$ such that d^{2} is a divisor of some number in V_{n} and define $b_{f}^{(2)}(n)$ as the least non-canceled number.

$$
f\left(n_{1}, n_{2}\right)=n_{1}^{2}+n_{2}^{2} \text { and } b_{f}^{(2)}
$$

Denote by F the set of all positive integers which are the products of prime numbers $\not \equiv 1(\bmod 4)$.
Let $\left(q_{s}\right)_{s=1}^{\infty}$ be the increasing sequence of all elements of F. In particular, $q_{1}=1$, which corresponds to the empty product.

$$
F=\{1,2,3,4,6,7,8,9,11,12,14,16,18,19,21,22,23,24,27,28,31, \ldots\} .
$$

Theorem

Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}, f\left(n_{1}, n_{2}\right)=n_{1}{ }^{2}+n_{2}{ }^{2}$. We have $b_{f}^{(2)}(1)=1$ and for $n \geq 2$

$$
b_{f}^{(2)}(n)=q_{s}, \text { if } 2 q_{s-1} \leq n<2 q_{s},
$$

where $s \geq 2$.
Hence, the set $\left\{b_{f}^{(2)}(n): n \in \mathbb{N}\right\}$ is equal to F.

$$
f\left(n_{1}, n_{2}, n_{3}\right)=n_{1}^{2}+n_{2}^{2}+n_{3}^{2} \text { and } b_{f}^{(2)}
$$

Theorem

For the function $f: \mathbb{N}^{3} \rightarrow \mathbb{N}$ given by the formula $f\left(n_{1}, n_{2}, n_{3}\right)=n_{1}^{2}+n_{2}^{2}+n_{3}^{2}$, we have $b_{f}^{(2)}(1)=1, b_{f}^{(2)}(2)=1$, and for $n \geq 3$

$$
b_{f}^{(2)}(n) \leq 2^{\left\lceil\log _{2} \frac{n}{3}\right\rceil}
$$

Remark
We conjecture that for any $n \geq 3$ we have $b_{f}^{(2)}(n)=2^{\left\lceil\log _{2} \frac{n}{3}\right\rceil}$.

$$
f\left(n_{1}, n_{2}, n_{3}\right)=n_{1}^{3}+n_{2}^{3}+n_{3}^{3}
$$

Problem

For the function $f: \mathbb{N}^{3} \rightarrow \mathbb{N}$ given by the formula $f\left(n_{1}, n_{2}, n_{3}\right)=n_{1}{ }^{3}+n_{2}{ }^{3}+n_{3}{ }^{3}$. We have

n	1,2	3	4,5	$6, \ldots, 10$	$11, \ldots, 17$	18,19	$20, \ldots, 24$	25,26	$27,28,29$	$30, \ldots, 34$
$b_{f}(n)$	1	2	4	7	13	52	65	117	156	169

n	$35,36,37$	$38, \ldots, 41$	$42, \ldots, 48$	$49, \ldots, 57$	58,59	$60,61,62$	$63, \ldots, 66$	$67, \ldots, 73$
$b_{f}(n)$	241	260	301	481	802	903	973	1118

Find and prove an explicit formula for the above sequence.

First remark: Unfortunately, it is not always easy to come up with explicit formulas, when all you have is a list of the terms.

Second remark: Can you prove the formula you conjectured?

$$
f\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=n_{1}^{2}+n_{2}^{2}+n_{3}^{2}+n_{4}^{2}
$$

Problem

For the function $f: \mathbb{N}^{4} \rightarrow \mathbb{N}$ given by the formula $f\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=n_{1}^{2}+n_{2}{ }^{2}+n_{3}{ }^{2}+n_{4}{ }^{2}$. We have

n	$1,2,3$	4,5	6,7	8,9	10,11	$12, \ldots, 15$	16	$17, \ldots, 23$
$b_{f}(n)$	1	3	8	17	24	32	89	96

n	$24, \ldots, 31$	$32, \ldots, 47$	$48, \ldots, 63$
$b_{f}(n)$	128	384	512

We conjecture that for any integer $s \geq 3$:

1) If $3 \cdot 2^{s} \leq n<4 \cdot 2^{s}$, then $b_{f}(n)=2 \cdot 4^{s}$,
2) If $4 \cdot 2^{s} \leq n<3 \cdot 2^{s+1}$, then $b_{f}(n)=6 \cdot 4^{s}$.

$$
f\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=n_{1}^{2}+n_{2}^{2}+n_{3}^{2}+n_{4}^{2}+n_{5}^{2}
$$

Problem

For the function $f: \mathbb{N}^{5} \rightarrow \mathbb{N}$ given by the formula
$f\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=n_{1}{ }^{2}+n_{2}{ }^{2}+n_{3}{ }^{2}+n_{4}{ }^{2}+n_{5}{ }^{2}$. We have

n	$1,2,3,4$	5	$6,7,8$	9	10	11	$12,13,14,15$	16	17	$18,19,20$	21	22	23,24
$b_{f}(n)$	1	2	3	6	9	15	33	73	90	105	132	153	193

n	25	26	27	28	29	30	31,32	33	34	35,36	37	$38,39,40$	41
$b_{f}(n)$	210	225	288	297	318	321	353	432	441	513	570	585	732

n	$43,44,45,46$	47,48	49,50	51	52	53,54	55,56	57	58	59,60	61
$b_{f}(n)$	825	1065	1185	1212	1257	1425	1473	1500	1617	1737	1860

Find and prove an explicit formula for the above sequence.

$$
f\left(n_{1}, n_{2}, n_{3}\right)=\frac{n_{1}\left(n_{1}+1\right)}{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}+\frac{n_{3}\left(n_{3}+1\right)}{2}, \text { sum of three triangular numbers }
$$

Problem

For the function $f: \mathbb{N}^{3} \rightarrow \mathbb{N}$ given by the formula
$f\left(n_{1}, n_{2}, n_{3}\right)=\frac{n_{1}\left(n_{1}+1\right)}{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}+\frac{n_{3}\left(n_{3}+1\right)}{2}$. We have

n	1,2	3,4	5	$6,7,8$	9,10	$11, \ldots, 14$	15	16	17	18,19
$b_{f}(n)$	1	2	6	11	20	29	53	69	76	81

n	20	21	22	23,24	25	26,27	28	29,30	$31,32,33$	34
$b_{f}(n)$	105	106	110	119	146	179	188	218	254	272

Find and prove an explicit formula for the above sequence.
L.K. Arnold, S.J. Benkoski and B.J. McCabe, The discriminator (a simple application of Bertrand's postulate), Amer. Math. Monthly (1985), 92, 275-277.
P. S. Bremser, P.D. Schumer, L.C. Washington, A note on the incongruence of consecutive integers to a fixed power, J. Number Theory (1990), 35, no. 1, 105-108.
J. Browkin, H-Q. Cao, Modifications of the Eratosthenes sieve, Colloq. Math. 135, (2014), pp. 127-138.
K. Molsen, Zur Verallgemeinerung des Bertrandschen Postulates, Deutsche Math. 6 (1941), 248-256.
P. Moree, Bertrand's postulate for primes in arithmetical progressions, Comput. Math. Appl. 26 (1993), 35-43.
P. Moree, The incongruence of consecutive values of polynomials, Finite Fields Appl. 2 (1996), no. 3, 321-335.
P. Moree and G. L. Mullen, Dickson polynomial discriminators, J. Number Theory 59 (1996), 88-105.
W. Sierpiński, Elementary Theory of numbers, Ed. by A. Schinzel, North-Holland (1988).
Z.W. Sun, On functions taking only prime values, J. Number Theory 133 (2013), pp. 2794-2812.
Z.W. Sun, On primes in arithmetic progressions (2013), available at arXiv:1304.5988v4.
M.Zieve, A note on the discriminator, J. Number Theory 73 (1998), no. 1, 122-138.

