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Introduction

Karol Cwalina and Tomasz Schoen [1] have recently proved the following
conjecture of Andrzej Schinzel [4]: the number of solutions of the congruence

a1x1 + . . .+ akxk ≡ 0 (mod n)

in the box 0 ≤ xi ≤ bi , where bi are positive integers, is at least

21−n
k∏

i=1

(bi + 1).

Using a completely di�erent method we shall prove the following more general
statement, also conjectured by Schinzel [4].
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Homogeneous case

Theorem1.1.

For every �nite Abelian group Γ, for all a1, . . . , ak ∈ Γ, and for all positive
integers b1, . . . , bk the number of solutions of the equation

k∑
i=1

aixi = 0

in non-negative integers xi ≤ bi is at least

21−D(Γ)
k∏

i=1

(bi + 1), (1)

where D(Γ) is the Davenport constant of the group Γ (see De�nition 2.1. below).
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Lemmas and de�nitions

Let Γ be a �nite Abelian group, with multiplicative notation.

Defnition 2.1.

De�ne the Davenport constant D(Γ) to be the smallest positive integer n such
that, for any sequence g1, . . . , gn of group elements, there exist a non-empty
sequence of indices

1 ≤ i1 < . . . < it ≤ n

such that
gi1 · . . . · git = 1.
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Lemmas and de�nitions

For a group with multiplicative notation, Theorem 1.1 has the form:
for every �nite Abelian group Γ, for all a1, . . . , ak ∈ Γ, and for all positive
integers b1, . . . , bk the number of solutions of the equation

k∏
i=1

axii = 1

in non-negative integers xi ≤ bi is at least

21−D(Γ)
k∏

i=1

(bi + 1). (2)
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Lemmas and de�nitions

By the de�nition of the Davenport constant, we may �nd g1, . . . , gD(Γ)−1 ∈ Γ such
that any product of a non-empty subsequence of this sequence is not equal 1 in Γ.

Since the number of solutions of the equation
D(Γ)−1∏
i=1

g xi
i = 1, where xi = 0 or

xi = 1, is equal 1 = 21−D(Γ)
D(Γ)−1∏
i=1

(1 + 1) we obtain:

Maciej Zakarczemny (Cracow University of Technology, Poland)Number of solutions in a box October 7, 2016 6 / 45



Lemmas and de�nitions

Remark 2.2.

In Theorem 1.1, 21−D(Γ) is the best possible coe�cient independent of ai , bi and
dependent only on Γ.
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Lemmas and de�nitions

Lemma 2.3.

For n ≥ 1 we have the following identity in Q[x ] and in the group ring Q[Γ].

1 + x + x2 + . . .+ xn =
n∑

j=0

2j−n−1(1 + x j)(1 + x)n−j . (3)

Proof. We proceed by induction on n.

(Elements of Q[Γ] are sometimes written as what are called " formal linear combinations of elements of Γ,

with coe�cients in Q " where this doesn't cause confusion)
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Lemmas and de�nitions

De�nition 2.4.

For an element
∑
g∈Γ

Ngg of the group ring Q[Γ] and a number n ∈ Q we write

∑
g∈Γ

Ngg � n i� N1 ≥ n.

Maciej Zakarczemny (Cracow University of Technology, Poland)Number of solutions in a box October 7, 2016 9 / 45



Lemmas and de�nitions

Lemma 2.5.

Theorem 1.1 in multiplicative notation is equivalent to the statement:
for every �nite Abelian group Γ, for all a1, . . . , ak ∈ Γ, and for all positive integers
b1, . . . , bk we have relation:

k∏
i=1

(1 + ai + . . .+ ai
bi ) � 21−D(Γ)

k∏
i=1

(bi + 1), (4)

where D(Γ) is the Davenport constant of the group Γ.
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Lemmas and de�nitions

Proof. Indeed, the number of solutions of the equation
k∏

i=1

axii = 1 in non-negative

integers xi ≤ bi is equal to N1, where

k∏
i=1

(1 + ai + . . .+ ai
bi ) =

∑
g∈Γ

Ngg .

We have N1 ≥ 21−D(Γ)
k∏

i=1

(bi + 1) if and only if relation (4) holds.
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Lemmas and de�nitions

Lemma 2.6.

Let Γ be a �nite Abelian group. For all a1, . . . , ak ∈ Γ we have

(1 + a1)(1 + a2) · . . . · (1 + ak) � 21−D(Γ) · 2k . (5)

Proof.For the completeness of the exposition we provide Olson's proof [3].
We proceed by induction on k . For k ≤ D(Γ)− 1 we have

(1 + a1)(1 + a2) · . . . · (1 + ak) � 1 ≥ 21−D(Γ) · 2k

and the assertion is true.
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Lemmas and de�nitions

Assume it is true for the number of factors less than k , where k > D(Γ)− 1.
Hence k ≥ D(Γ). By the de�nition of the Davenport constant we may assume,
without loss of generality, that

a1 · . . . · at = 1, for some 1 ≤ t ≤ D(Γ).

By the inductive assumption

t∏
i=2

(1 + a−1i )
k∏

i=t+1

(1 + ai ) � 21−D(Γ) · 2k−1,

k∏
i=2

(1 + ai ) � 21−D(Γ) · 2k−1.
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Lemmas and de�nitions

Hence
k∏

i=1

(1 + ai ) =
k∏

i=2

(1 + ai ) + a1

k∏
i=2

(1 + ai )

=
k∏

i=2

(1 + ai ) + a1a2 · . . . · at
t∏

i=2

(1 + a−1i )
k∏

i=t+1

(1 + ai )

=
k∏

i=2

(1+ai )+
t∏

i=2

(1+a−1i )
k∏

i=t+1

(1+ai ) � 21−D(Γ)·2k−1+21−D(Γ)·2k−1 = 21−D(Γ)·2k .
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Proof of Theorem

By Lemma 2.5. it su�ces to prove:

Theorem

For every �nite Abelian group Γ, for all a1, . . . , ak ∈ Γ, and for all positive integers

b1, . . . , bk we have

k∏
i=1

(1 + ai + . . .+ ai
bi ) � 21−D(Γ)

k∏
i=1

(bi + 1),

where D(Γ) is the Davenport constant of the group Γ.
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Proof of Theorem

Proof.We use the identity (3) to get

k∏
i=1

(1 + ai + . . .+ ai
bi ) =

k∏
i=1

bi∑
j=0

2j−bi−1(1 + ai
j)(1 + ai )

bi−j (6)

=
∑

0≤j1≤b1
0≤j2≤b2

...
0≤jk≤bk

k∏
i=1

2ji−bi−1(1 + ai
ji )(1 + ai )

bi−ji .
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Proof of Theorem

By Lemma 2.6. we obtain

∑
0≤j1≤b1
0≤j2≤b2

...
0≤jk≤bk

k∏
i=1

2ji−bi−1(1 + ai
ji )(1 + ai )

bi−ji

� 21−D(Γ)
∑

0≤j1≤b1
0≤j2≤b2

...
0≤jk≤bk

k∏
i=1

2ji−bi−121+bi−ji = 21−D(Γ)
∑

0≤j1≤b1
0≤j2≤b2

...
0≤jk≤bk

1

= 21−D(Γ)
k∏

i=1

(bi + 1).
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Proof of Theorem

Thus
k∏

i=1

(1 + ai + . . .+ ai
bi ) � 21−D(Γ)

k∏
i=1

(bi + 1).

Maciej Zakarczemny (Cracow University of Technology, Poland)Number of solutions in a box October 7, 2016 18 / 45



Inhomogeneous case

We have proved in [9] the following two statements.
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Inhomogeneous case

Theorem 3.1.

For every �nite Abelian group Γ, for all g , a1, . . . , ak ∈ Γ, if there exists

a solution of the equation
k∑

i=1

aixi = g in non-negative integers xi ≤ bi , where bi

are positive integers, then the number of such solutions is at least

31−D(Γ)
k∏

i=1

(bi + 1). (7)
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Inhomogeneous case

Remark 3.2.

Let Γ = nZ2 be a direct product of n cyclic groups of order two, a1, . . . , an a basis
for Γ. Then the number of solutions of the equation

n∑
i=1

aixi =
n∑

i=1

ai

in non-negative integers xi ≤ bi = 2, equals 1.
Since D(Γ) = n + 1 (see Olson [2]) and 1 = 31−D(Γ)

∏n
i=1

(2 + 1),
we get that 31−D(Γ) is the best possible coe�cient independent of ai , bi , g and
dependent only on Γ.
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Inhomogeneous case

Theorem 3.3.

For every �nite Abelian group Γ, for all g , a1, . . . , ak ∈ Γ, if there exists

a solution of the equation
k∑

i=1

aixi = g in non-negative integers xi ≤ bi , where

bi ∈ {2s − 1 : s ∈ N}, then the number of such solutions is at least

21−D(Γ)
k∏

i=1

(bi + 1). (8)
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Inhomogeneous case

Lemma 3.4.

For every �nite Abelian group Γ with multiplicative notation and for all
a1, . . . , ak , g ∈ Γ, the number of solutions of the equation

∏k
i=1

ai
xi = g in

non-negative integers xi ≤ bi is equal to N1, where

g−1
k∏

i=1

(1 + ai + . . .+ ai
bi ) =

∑
h∈Γ

Nhh,

is an identity in Q[Γ].
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Inhomogeneous case

Proof. We interpret the equation g−1
k∏

i=1

(1 + ai + . . .+ ai
bi ) =

∑
h∈Γ

Nhh

combinatorially. For g ∈ Γ look at all sequences a1
x1 , a2

x2 , . . . , ak
xk , that have

product g , where xi ≤ bi are non-negative integers. Then N1 count those
sequences. Therefore the number of solutions of the equation

∏k
i=1

ai
xi = g

in non-negative integers xi ≤ bi is equal to N1.
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Inhomogeneous case

Lemma 3.5.

Theorem 3.1. with multiplicative notation is equivalent to the statement: for
every �nite Abelian group Γ, for all g , a1, . . . , ak ∈ Γ, if there exists a solution of

the equation
k∏

i=1

ai
xi = g in non-negative integers xi ≤ bi , where bi are positive

integers, then we have:

g−1
k∏

i=1

(1 + ai + . . .+ ai
bi ) � 31−D(Γ)

k∏
i=1

(bi + 1), (9)

where D(Γ) is the Davenport constant of the group Γ.
Proof. This follows from Lemma 3.4 and De�nition 2.4.
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Inhomogeneous case

Lemma 3.6.

Theorem 3.3. with multiplicative notation is equivalent to the statement: for
every �nite Abelian group Γ, for all g , a1, . . . , ak ∈ Γ, and for all positive integers
b1, b2, . . . , bk ∈ {2s − 1 : s ∈ N}, if there exists a solution of the equation
k∏

i=1

ai
xi = g in non-negative integers xi ≤ bi , then we have relation:

g−1
k∏

i=1

(1 + ai + . . .+ ai
bi ) � 21−D(Γ)

k∏
i=1

(bi + 1). (10)

Proof. This follows from Lemma 3.4 and De�nition 2.4.
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Inhomogeneous case

Lemma 3.7.

For every �nite Abelian group Γ and for all g , a1, a2, . . . , ak ∈ Γ, if there exists

a solution of the equation
k∏

i=1

ai
xi = g in non-negative integers xi ≤ 1, then

g−1
k∏

i=1

(1 + ai ) � 21−D(Γ) · 2k . (11)
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Inhomogeneous case

Proof. We may assume that
t∏

i=1

ai = g , where 1 ≤ t ≤ k .

We have the identities

g−1
k∏

i=1

(1+ai ) = g−1
t∏

i=1

ai

t∏
i=1

(1+a−1i )
k∏

i=t+1

(1+ai ) =
t∏

i=1

(1+a−1i )
k∏

i=t+1

(1+ai ).

By Theorem 1.1
t∏

i=1

(1 + a−1i )
k∏

i=t+1

(1 + ai ) � 21−D(Γ)2k .

This implies

g−1
k∏

i=1

(1 + ai ) � 21−D(Γ)2k .
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Inhomogeneous case

Lemma 3.8.

If 0 ≤ t < b, where t, b are integers, then b − t + 1 ≥ ( 2
3

)t(b + 1).

Proof. We verify by di�erentiation that the function f (x) = 2( 3
2

)x − x − 2

is increasing in the interval (1,∞). Since f (0) = f (1) = 0, f (2) = 1

2
we get

2( 3
2

)t ≥ t + 2 for non-negative integers t. Hence 1− t
b+1
≥ 1− t

t+2
≥ ( 2

3
)t ,

and thus b − t + 1 ≥ ( 2
3

)t(b + 1).

Maciej Zakarczemny (Cracow University of Technology, Poland)Number of solutions in a box October 7, 2016 29 / 45



Inhomogeneous case

Lemma 3.9.

For s ≥ 1 we have the following identity in Q[Γ] :

1 + x + x2 + . . .+ x2
s−1 =

s∏
j=1

(1 + x2
j−1

). (12)

Proof. We proceed by induction on s.
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Inhomogeneous case

Proof of Theorem 3.1.

We may �nd 0 ≤ ti ≤ bi , where 1 ≤ i ≤ k , such that a1
t1a2

t2 · . . . · ak tk = g .
By de�nition of the Davenport constant we may assume that

k∑
i=1

ti ≤ D(Γ)− 1. (13)

Let ti = bi for 1 ≤ i ≤ s ≤ k ; ti < bi for s + 1 ≤ i ≤ k ;
if ti < bi for 1 ≤ i ≤ k , then we take s = 0.
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Inhomogeneous case

We have the identities

g−1
s∏

i=1

(1 + ai + . . .+ abii )
k∏

i=s+1

(ai
ti + ai

ti+1 + . . .+ abii ) =

=
(( s∏

i=1

abii

)( k∏
i=s+1

atii

))−1 s∏
i=1

(1+ ai + . . .+ abii )
k∏

i=s+1

(ai
ti + ai

ti+1 + . . .+ abii ) =

=
s∏

i=1

(1 + a−1i + . . .+ (a−1i )bi )
k∏

i=s+1

(1 + ai + . . .+ ai
bi−ti ).
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Inhomogeneous case

By Theorem 1.1.

s∏
i=1

(1 + a−1i + . . .+ (a−1i )bi )
k∏

i=s+1

(1 + ai + . . .+ ai
bi−ti )

� 21−D(Γ)
( s∏

i=1

(bi + 1)
)( k∏

i=s+1

(bi − ti + 1)
)
.
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Inhomogeneous case

We have by Lemma 3.8. that

21−D(Γ)
( s∏

i=1

(bi + 1)
)( k∏

i=s+1

(bi − ti + 1)
)

≥ 21−D(Γ)
( s∏

i=1

(bi + 1)
)( k∏

i=s+1

( 2
3

)ti (bi + 1)
)

=

= 21−D(Γ)( 2
3

)
∑k

i=s+1 ti

k∏
i=1

(bi + 1) ≥ 21−D(Γ)( 2
3

)
∑k

i=1 ti

k∏
i=1

(bi + 1).
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Inhomogeneous case

Since (13) it follows that

21−D(Γ)( 2
3

)
∑k

i=1 ti

k∏
i=1

(bi + 1) ≥ 21−D(Γ)( 2
3

)D(Γ)−1
k∏

i=1

(bi + 1) = 31−D(Γ)
k∏

i=1

(bi + 1).

Hence

g−1
s∏

i=1

(1 + ai + . . .+ abii )
k∏

i=s+1

(ai
ti + ai

ti+1 + . . .+ abii ) � 31−D(Γ)
k∏

i=1

(bi + 1).

Finally

g−1
k∏

i=1

(1 + ai + . . .+ abii ) � 31−D(Γ)
k∏

i=1

(bi + 1).
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Inhomogeneous case

Proof of Theorem 3.3.

Let bi = 2si − 1, where si ∈ N.
We take 0 ≤ ti ≤ bi , where 1 ≤ i ≤ k such that at1

1
at2
2
· . . . · atkk = g .

Since 0 ≤ ti ≤ 2si − 1 we may �nd εji ∈ {0, 1} such that

ti =

si∑
j=1

εji2
j−1

for 1 ≤ i ≤ k.
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Inhomogeneous case

Using (12) we obtain

a−tii (1 + ai + . . .+ ai
bi ) = a−tii

si∏
j=1

(1 + a2
j−1

i ) =

= a
−

si∑
j=1

εji2
j−1

i

si∏
j=1

(1+a2
j−1

i ) =

si∏
j=1

a
−εji2j−1
i

si∏
j=1

(1+a2
j−1

i ) =

si∏
j=1

a
−εji2j−1
i (1+a2

j−1

i ) =

=

si∏
j=1

(a
−εji2j−1
i + a

(1−εji )2j−1
i ) =

si∏
j=1

(1 + a
ηji2

j−1

i ),

where ηji = 1− 2εji ∈ {−1, 1}.
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Inhomogeneous case

Thus

g−1
k∏

i=1

(1 + ai + . . .+ ai
bi ) =

k∏
i=1

a−tii (1 + ai + . . .+ ai
bi ) =

k∏
i=1

si∏
j=1

(1 + a
ηji2

j−1

i ).
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Inhomogeneous case

By Theorem 1.1.

k∏
i=1

si∏
j=1

(1 + a
ηji2

j−1

i ) � 21−D(Γ)
k∏

i=1

si∏
j=1

2 = 21−D(Γ)
k∏

i=1

2si = 21−D(Γ)
k∏

i=1

(bi + 1),

which implies

g−1
k∏

i=1

(1 + ai + . . .+ ai
bi ) � 21−D(Γ)

k∏
i=1

(bi + 1).
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Inhomogeneous case
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Inhomogeneous case

Thank you for your attention.
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Inhomogeneous case

Theorem 1.1 we may rewrite in the form:
for all positive integers n1 | n2 | . . . | nl , bi and for all integers aij , where
1 ≤ i ≤ k , 1 ≤ j ≤ l the number of solutions of the system



a11x1 + a21x2 + . . . + ak1xk ≡ 0 (mod n1),

a12x1 + a22x2 + . . . + ak2xk ≡ 0 (mod n2),

.

.

.

a1l x1 + a2l x2 + . . . + akl xk ≡ 0 (mod nl ),

in non-negative integers xi ≤ bi is at least

21−D(Zn1⊕Zn2⊕...⊕Znl
)

k∏
i=1

(bi + 1).
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Inhomogeneous case

Known Davenports constants

1. D(Zn) = n.

2. If 1 < m|n then D(Zm ⊕ Zn) = m + n − 1.

3. If G = Zpe1 ⊕ Zpe2 ⊕ . . .⊕ Zper a �nite p − group then D(G) = 1 +
r∑

i=1
(pe

i
− 1).

4. If G is a �nite abelian group , then there exist uniquely determined integers 1 < d1|d2| . . . |dr , such that

G ∼= Zd1
⊕ Zd2

⊕ . . .⊕ Zdr . We obtain a sequence of
r∑

i=1
(di − 1), hence D(G) ≥ 1 +

r∑
i=1

(di − 1).

5. It is unknown whether D(G) = 1 +
r∑

i=1
(di − 1) holds true for all groups of rank r = 3.

6. D(Z3 ⊕ Z3 ⊕ Z3d ) = 3d + 4.

7. Currently (2008) the best upper bound for D(G) is due to Van Emde Boas and Kruyswijk and Meshulam:

D(G) ≤ n +
[
n log

|G|
n

]
, where n is the maximum possible order of an element also known as the exponent of

the group.

8. D(Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2n) = 2n + 3, with odd n.

9. D(Zm ⊕ Zn ⊕ Zn ⊕ Z2n) > 1 + (m− 1) + (n− 1) + (n− 1) + (2n− 1), for every odd n,m with m ≥ 3 and m|n.
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Inhomogeneous case

Known Davenports constants of non-abelian �nite groups

1. Dihedral groups. If D2n = 〈x, y : x2 = yn = 1, yx = xy−1〉, then D(D2n) = n + 1,

2. Dicyclic groups. If Q4n = 〈x, y : x2 = yn, y2n = 1, yx = xy−1〉, then D(Q4n) = 2n + 1,

3. A non-abelian group of order pq exists only when p|q − 1, and such a group is unique.
Gpq = 〈x, y : xp = yq = 1, yx = xy s〉, where sp ≡ 1 mod q, s 6≡ 1 mod q.
We have D(Gpq) = p + q − 1.

J. BASS Improving the Erdös - Ginzburg - Ziv theorem for some non-abelian groups J. Number Theory, 126 (2007),

pp. 217 - 236
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Inhomogeneous case

Group ring

Group ring Q[Γ] is a Q-vector space with basis Γ and with multiplication de�ned distributively using the given
multiplication of Γ. ∑

g∈Γ

αg g

 ·
∑

g∈Γ

βg g

 =
∑
x∈Γ

∑
gh=x

αgβh

 x.

We have
∑
g∈Γ

αg g =
∑
g∈Γ

βg g i� αg = βg for all g ∈ Γ.

Instead
∑
g∈Γ

0g we write 0.

Instead 1g we write g.
Instead (−α)g we write −αg.
We denoting the group unit 1Γ and the unit element of the ring Q by the same symbol 1.
We denoting addition operation in Q[Γ] and in Q by the same symbol.

If 1Γ = 1, then the additive group of Q[Γ] becomes an extension of the additive group of Q, thus the use of the same

symbol + is legitimate.
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