Number of solutions in a box of a linear equation in an Abelian group

Maciej Zakarczemny

Cracow University of Technology, Poland

October 7, 2016

Karol Cwalina and Tomasz Schoen [1] have recently proved the following conjecture of Andrzej Schinzel [4]: the number of solutions of the congruence

$$
a_{1} x_{1}+\ldots+a_{k} x_{k} \equiv 0(\bmod n)
$$

in the box $0 \leq x_{i} \leq b_{i}$, where b_{i} are positive integers, is at least

$$
2^{1-n} \prod_{i=1}^{k}\left(b_{i}+1\right)
$$

Using a completely different method we shall prove the following more general statement, also conjectured by Schinzel [4].

Theorem 1.1.

For every finite Abelian group Γ, for all $a_{1}, \ldots, a_{k} \in \Gamma$, and for all positive integers b_{1}, \ldots, b_{k} the number of solutions of the equation

$$
\sum_{i=1}^{k} a_{i} x_{i}=0
$$

in non-negative integers $x_{i} \leq b_{i}$ is at least

$$
\begin{equation*}
2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right) \tag{1}
\end{equation*}
$$

where $D(\Gamma)$ is the Davenport constant of the group Γ (see Definition 2.1. below).

Let Γ be a finite Abelian group, with multiplicative notation.

Defnition 2.1.

Define the Davenport constant $D(\Gamma)$ to be the smallest positive integer n such that, for any sequence g_{1}, \ldots, g_{n} of group elements, there exist a non-empty sequence of indices

$$
1 \leq i_{1}<\ldots<i_{t} \leq n
$$

such that

$$
g_{i_{1}} \cdot \ldots \cdot g_{i_{t}}=1
$$

For a group with multiplicative notation, Theorem 1.1 has the form: for every finite Abelian group Γ, for all $a_{1}, \ldots, a_{k} \in \Gamma$, and for all positive integers b_{1}, \ldots, b_{k} the number of solutions of the equation

$$
\prod_{i=1}^{k} a_{i}^{x_{i}}=1
$$

in non-negative integers $x_{i} \leq b_{i}$ is at least

$$
\begin{equation*}
2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right) \tag{2}
\end{equation*}
$$

By the definition of the Davenport constant, we may find $g_{1}, \ldots, g_{D(\Gamma)-1} \in \Gamma$ such that any product of a non-empty subsequence of this sequence is not equal 1 in Γ.
Since the number of solutions of the equation $\prod_{i=1}^{D(\Gamma)-1} g_{i}^{x_{i}}=1$, where $x_{i}=0$ or
$x_{i}=1$, is equal $1=2^{1-D(\Gamma)} \prod_{i=1}^{D(\Gamma)-1}(1+1)$ we obtain:

Remark 2.2

In Theorem 1.1, $2^{1-D(\Gamma)}$ is the best possible coefficient independent of a_{i}, b_{i} and dependent only on Γ.

Lemma 2.3.

For $n \geq 1$ we have the following identity in $\mathbb{Q}[x]$ and in the group ring $\mathbb{Q}[\Gamma]$.

$$
\begin{equation*}
1+x+x^{2}+\ldots+x^{n}=\sum_{j=0}^{n} 2^{j-n-1}\left(1+x^{j}\right)(1+x)^{n-j} . \tag{3}
\end{equation*}
$$

Proof. We proceed by induction on n.
(Elements of $\mathbb{Q}[\Gamma]$ are sometimes written as what are called "formal linear combinations of elements of Γ, with coefficients in $\mathbb{Q}^{\prime \prime}$ where this doesn't cause confusion)

Definition 2.4.

For an element $\sum_{g \in \Gamma} N_{g} g$ of the group ring $\mathbb{Q}[\Gamma]$ and a number $n \in \mathbb{Q}$ we write

$$
\sum_{g \in \Gamma} N_{g} g \succeq n \text { iff } \quad N_{1} \geq n
$$

Lemma 2.5.

Theorem 1.1 in multiplicative notation is equivalent to the statement: for every finite Abelian group Γ, for all $a_{1}, \ldots, a_{k} \in \Gamma$, and for all positive integers b_{1}, \ldots, b_{k} we have relation:

$$
\begin{equation*}
\prod_{i=1}^{k}\left(1+a_{i}+\ldots+a_{i}^{b_{i}}\right) \succeq 2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right) \tag{4}
\end{equation*}
$$

where $D(\Gamma)$ is the Davenport constant of the group Γ.

Proof. Indeed, the number of solutions of the equation $\prod_{i=1}^{k} a_{i}^{x_{i}}=1$ in non-negative integers $x_{i} \leq b_{i}$ is equal to N_{1}, where

$$
\prod_{i=1}^{k}\left(1+a_{i}+\ldots+a_{i}^{b_{i}}\right)=\sum_{g \in \Gamma} N_{g} g .
$$

We have $N_{1} \geq 2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right)$ if and only if relation (4) holds.

Lemma 2.6.

Let Γ be a finite Abelian group. For all $a_{1}, \ldots, a_{k} \in \Gamma$ we have

$$
\begin{equation*}
\left(1+a_{1}\right)\left(1+a_{2}\right) \cdot \ldots \cdot\left(1+a_{k}\right) \succeq 2^{1-D(\Gamma)} \cdot 2^{k} . \tag{5}
\end{equation*}
$$

Proof. For the completeness of the exposition we provide Olson's proof [3]. We proceed by induction on k. For $k \leq D(\Gamma)-1$ we have

$$
\left(1+a_{1}\right)\left(1+a_{2}\right) \cdot \ldots \cdot\left(1+a_{k}\right) \succeq 1 \geq 2^{1-D(\Gamma)} \cdot 2^{k}
$$

and the assertion is true.

Assume it is true for the number of factors less than k, where $k>D(\Gamma)-1$. Hence $k \geq D(\Gamma)$. By the definition of the Davenport constant we may assume, without loss of generality, that

$$
a_{1} \cdot \ldots \cdot a_{t}=1, \text { for some } 1 \leq t \leq D(\Gamma)
$$

By the inductive assumption

$$
\begin{gathered}
\prod_{i=2}^{t}\left(1+a_{i}^{-1}\right) \prod_{i=t+1}^{k}\left(1+a_{i}\right) \succeq 2^{1-D(\Gamma)} \cdot 2^{k-1} \\
\prod_{i=2}^{k}\left(1+a_{i}\right) \succeq 2^{1-D(\Gamma)} \cdot 2^{k-1}
\end{gathered}
$$

Hence

$$
\begin{gathered}
\prod_{i=1}^{k}\left(1+a_{i}\right)=\prod_{i=2}^{k}\left(1+a_{i}\right)+a_{1} \prod_{i=2}^{k}\left(1+a_{i}\right) \\
=\prod_{i=2}^{k}\left(1+a_{i}\right)+a_{1} a_{2} \cdot \ldots \cdot a_{t} \prod_{i=2}^{t}\left(1+a_{i}^{-1}\right) \prod_{i=t+1}^{k}\left(1+a_{i}\right) \\
=\prod_{i=2}^{k}\left(1+a_{i}\right)+\prod_{i=2}^{t}\left(1+a_{i}^{-1}\right) \prod_{i=t+1}^{k}\left(1+a_{i}\right) \succeq 2^{1-D(\Gamma)} \cdot 2^{k-1}+2^{1-D(\Gamma)} \cdot 2^{k-1}=2^{1-D(\Gamma)} \cdot 2^{k}
\end{gathered}
$$

By Lemma 2.5. it suffices to prove:
Theorem
For every finite Abelian group Γ, for all $a_{1}, \ldots, a_{k} \in \Gamma$, and for all positive integers b_{1}, \ldots, b_{k} we have

$$
\prod_{i=1}^{k}\left(1+a_{i}+\ldots+a_{i}{ }^{b_{i}}\right) \succeq 2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right)
$$

where $D(\Gamma)$ is the Davenport constant of the group Γ.

Proof. We use the identity (3) to get

$$
\begin{gather*}
\prod_{i=1}^{k}\left(1+a_{i}+\ldots+a_{i} b_{i}\right)=\prod_{i=1}^{k} \sum_{j=0}^{b_{i}} 2^{j-b_{i}-1}\left(1+a_{i}^{j}\right)\left(1+a_{i}\right)^{b_{i}-j} \tag{6}\\
=\sum_{\substack{0 \leq j_{1} \leq b_{1} \\
0 \leq j_{2} \leq b_{2}}} \prod_{i=1}^{k} 2^{j_{i}-b_{i}-1}\left(1+a_{i}^{j_{i}}\right)\left(1+a_{i}\right)^{b_{i}-j_{i}} \\
\vdots \\
0 \leq j_{k} \leq b_{k}
\end{gather*}
$$

By Lemma 2.6. we obtain

$$
\begin{gathered}
\sum_{\substack{0 \leq j_{1} \leq b_{1} \\
0 \leq j_{2} \leq b_{2}}} \prod_{i=1}^{k} 2^{j_{i}-b_{i}-1}\left(1+a_{i}^{j_{i}}\right)\left(1+a_{i}\right)^{b_{i}-j_{i}} \\
\vdots \\
0 \leq j_{k} \leq b_{k} \\
\succeq 2^{1-D(\Gamma) \sum_{\substack{0 \leq j_{1} \leq b_{1} \\
0 \leq j_{\mathbf{2}} \leq b_{2}}} \prod_{i=1}^{k} 2^{j_{i}-b_{i}-1} 2^{1+b_{i}-j_{i}}=2^{1-D(\Gamma)} \sum_{\substack{0 \leq j_{1} \leq b_{1} \\
0 \leq j_{k} \leq b_{k}}} 1} \begin{array}{c}
0 \leq b_{2} \\
0 \leq j_{k} \leq b_{k} \\
\\
=2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right) .
\end{array}
\end{gathered}
$$

Thus

$$
\prod_{i=1}^{k}\left(1+a_{i}+\ldots+a_{i}{ }^{b_{i}}\right) \succeq 2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right)
$$

We have proved in [9] the following two statements.

Theorem 3.1.

For every finite Abelian group Γ, for all $g, a_{1}, \ldots, a_{k} \in \Gamma$, if there exists a solution of the equation $\sum_{i=1}^{k} a_{i} x_{i}=g$ in non-negative integers $x_{i} \leq b_{i}$, where b_{i} are positive integers, then the number of such solutions is at least

$$
\begin{equation*}
3^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right) \tag{7}
\end{equation*}
$$

Remark 3.2.

Let $\Gamma=n \mathbb{Z}_{2}$ be a direct product of n cyclic groups of order two, a_{1}, \ldots, a_{n} a basis for Γ. Then the number of solutions of the equation

$$
\sum_{i=1}^{n} a_{i} x_{i}=\sum_{i=1}^{n} a_{i}
$$

in non-negative integers $x_{i} \leq b_{i}=2$, equals 1 .
Since $D(\Gamma)=n+1$ (see Olson [2]) and $1=3^{1-D(\Gamma)} \prod_{i=1}^{n}(2+1)$,
we get that $3^{1-D(\Gamma)}$ is the best possible coefficient independent of a_{i}, b_{i}, g and dependent only on Γ.

Theorem 3.3.

For every finite Abelian group Γ, for all $g, a_{1}, \ldots, a_{k} \in \Gamma$, if there exists a solution of the equation $\sum_{i=1}^{k} a_{i} x_{i}=g$ in non-negative integers $x_{i} \leq b_{i}$, where $b_{i} \in\left\{2^{s}-1: s \in \mathbb{N}\right\}$, then the number of such solutions is at least

$$
\begin{equation*}
2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right) \tag{8}
\end{equation*}
$$

Lemma 3.4.

For every finite Abelian group Γ with multiplicative notation and for all $a_{1}, \ldots, a_{k}, g \in \Gamma$, the number of solutions of the equation $\prod_{i=1}^{k} a_{i}{ }^{x_{i}}=g$ in non-negative integers $x_{i} \leq b_{i}$ is equal to N_{1}, where

$$
g^{-1} \prod_{i=1}^{k}\left(1+a_{i}+\ldots+a_{i}^{b_{i}}\right)=\sum_{h \in \Gamma} N_{h} h
$$

is an identity in $\mathbb{Q}[\Gamma]$.

Proof. We interpret the equation $g^{-1} \prod_{i=1}^{k}\left(1+a_{i}+\ldots+a_{i}^{b_{i}}\right)=\sum_{h \in \Gamma} N_{h} h$ combinatorially. For $g \in \Gamma$ look at all sequences $a_{1}{ }^{x_{1}}, a_{2}{ }^{x_{2}}, \ldots, a_{k}{ }^{x_{k}}$, that have product g, where $x_{i} \leq b_{i}$ are non-negative integers. Then N_{1} count those sequences. Therefore the number of solutions of the equation $\prod_{i=1}^{k} a_{i}^{x_{i}}=g$ in non-negative integers $x_{i} \leq b_{i}$ is equal to N_{1}.

Lemma 3.5.

Theorem 3.1. with multiplicative notation is equivalent to the statement: for every finite Abelian group Γ, for all $g, a_{1}, \ldots, a_{k} \in \Gamma$, if there exists a solution of the equation $\prod_{i=1}^{k} a_{i}^{x_{i}}=g$ in non-negative integers $x_{i} \leq b_{i}$, where b_{i} are positive integers, then we have:

$$
\begin{equation*}
g^{-1} \prod_{i=1}^{k}\left(1+a_{i}+\ldots+a_{i} b_{i}\right) \succeq 3^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right) \tag{9}
\end{equation*}
$$

where $D(\Gamma)$ is the Davenport constant of the group Γ. Proof. This follows from Lemma 3.4 and Definition 2.4.

Lemma 3.6.

Theorem 3.3. with multiplicative notation is equivalent to the statement: for every finite Abelian group Γ, for all $g, a_{1}, \ldots, a_{k} \in \Gamma$, and for all positive integers $b_{1}, b_{2}, \ldots, b_{k} \in\left\{2^{s}-1: s \in \mathbb{N}\right\}$, if there exists a solution of the equation $\prod_{i=1}^{k} a_{i}^{x_{i}}=g$ in non-negative integers $x_{i} \leq b_{i}$, then we have relation:

$$
\begin{equation*}
g^{-1} \prod_{i=1}^{k}\left(1+a_{i}+\ldots+a_{i}^{b_{i}}\right) \succeq 2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right) . \tag{10}
\end{equation*}
$$

Proof. This follows from Lemma 3.4 and Definition 2.4.

Lemma 3.7.

For every finite Abelian group Γ and for all $g, a_{1}, a_{2}, \ldots, a_{k} \in \Gamma$, if there exists a solution of the equation $\prod_{i=1}^{k} a_{i}{ }^{x_{i}}=g$ in non-negative integers $x_{i} \leq 1$, then

$$
\begin{equation*}
g^{-1} \prod_{i=1}^{k}\left(1+a_{i}\right) \succeq 2^{1-D(\Gamma)} \cdot 2^{k} \tag{11}
\end{equation*}
$$

Proof. We may assume that $\prod_{i=1}^{t} a_{i}=g$, where $1 \leq t \leq k$.
We have the identities
$g^{-1} \prod_{i=1}^{k}\left(1+a_{i}\right)=g^{-1} \prod_{i=1}^{t} a_{i} \prod_{i=1}^{t}\left(1+a_{i}^{-1}\right) \prod_{i=t+1}^{k}\left(1+a_{i}\right)=\prod_{i=1}^{t}\left(1+a_{i}^{-1}\right) \prod_{i=t+1}^{k}\left(1+a_{i}\right)$.
By Theorem 1.1

$$
\prod_{i=1}^{t}\left(1+a_{i}^{-1}\right) \prod_{i=t+1}^{k}\left(1+a_{i}\right) \succeq 2^{1-D(\Gamma)} 2^{k}
$$

This implies

$$
g^{-1} \prod_{i=1}^{k}\left(1+a_{i}\right) \succeq 2^{1-D(\Gamma)} 2^{k} .
$$

Lemma 3.8.

If $0 \leq t<b$, where t, b are integers, then $b-t+1 \geq\left(\frac{2}{3}\right)^{t}(b+1)$.

Proof. We verify by differentiation that the function $f(x)=2\left(\frac{3}{2}\right)^{x}-x-2$ is increasing in the interval $(1, \infty)$. Since $f(0)=f(1)=0, f(2)=\frac{1}{2}$ we get $2\left(\frac{3}{2}\right)^{t} \geq t+2$ for non-negative integers t. Hence $1-\frac{t}{b+1} \geq 1-\frac{t}{t+2} \geq\left(\frac{2}{3}\right)^{t}$, and thus $b-t+1 \geq\left(\frac{2}{3}\right)^{t}(b+1)$.

Lemma 3.9.

For $s \geq 1$ we have the following identity in $\mathbb{Q}[\Gamma]$:

$$
\begin{equation*}
1+x+x^{2}+\ldots+x^{2^{s}-1}=\prod_{j=1}^{s}\left(1+x^{2^{j-1}}\right) \tag{12}
\end{equation*}
$$

Proof. We proceed by induction on s.

Proof of Theorem 3.1.

We may find $0 \leq t_{i} \leq b_{i}$, where $1 \leq i \leq k$, such that $a_{1}{ }^{t_{1}} a_{2}{ }^{t_{2}} \cdot \ldots \cdot a_{k}{ }^{t_{k}}=g$. By definition of the Davenport constant we may assume that

$$
\begin{equation*}
\sum_{i=1}^{k} t_{i} \leq D(\Gamma)-1 \tag{13}
\end{equation*}
$$

Let $t_{i}=b_{i}$ for $1 \leq i \leq s \leq k ; t_{i}<b_{i}$ for $s+1 \leq i \leq k$; if $t_{i}<b_{i}$ for $1 \leq i \leq k$, then we take $s=0$.

We have the identities

$$
\begin{gathered}
g^{-1} \prod_{i=1}^{s}\left(1+a_{i}+\ldots+a_{i}^{b_{i}}\right) \prod_{i=s+1}^{k}\left(a_{i}^{t_{i}}+a_{i}^{t_{i}+1}+\ldots+a_{i}^{b_{i}}\right)= \\
=\left(\left(\prod_{i=1}^{s} a_{i}^{b_{i}}\right)\left(\prod_{i=s+1}^{k} a_{i}^{t_{i}}\right)\right)^{-1} \prod_{i=1}^{s}\left(1+a_{i}+\ldots+a_{i}^{b_{i}}\right) \prod_{i=s+1}^{k}\left(a_{i}^{t_{i}}+a_{i}^{t_{i}+1}+\ldots+a_{i}^{b_{i}}\right)= \\
=\prod_{i=1}^{s}\left(1+a_{i}^{-1}+\ldots+\left(a_{i}^{-1}\right)^{b_{i}}\right) \prod_{i=s+1}^{k}\left(1+a_{i}+\ldots+a_{i}^{b_{i}-t_{i}}\right)
\end{gathered}
$$

By Theorem 1.1.

$$
\begin{aligned}
& \prod_{i=1}^{s}\left(1+a_{i}^{-1}+\ldots+\left(a_{i}^{-1}\right)^{b_{i}}\right) \prod_{i=s+1}^{k}\left(1+a_{i}+\ldots+a_{i}^{b_{i}-t_{i}}\right) \\
& \quad \succeq 2^{1-D(\Gamma)}\left(\prod_{i=1}^{s}\left(b_{i}+1\right)\right)\left(\prod_{i=s+1}^{k}\left(b_{i}-t_{i}+1\right)\right) .
\end{aligned}
$$

We have by Lemma 3.8. that

$$
\begin{gathered}
2^{1-D(\Gamma)}\left(\prod_{i=1}^{s}\left(b_{i}+1\right)\right)\left(\prod_{i=s+1}^{k}\left(b_{i}-t_{i}+1\right)\right) \\
\geq 2^{1-D(\Gamma)}\left(\prod_{i=1}^{s}\left(b_{i}+1\right)\right)\left(\prod_{i=s+1}^{k}\left(\frac{2}{3}\right)^{t_{i}}\left(b_{i}+1\right)\right)= \\
=2^{1-D(\Gamma)}\left(\frac{2}{3}\right)^{\sum_{i=s+1}^{k} t_{i}} \prod_{i=1}^{k}\left(b_{i}+1\right) \geq 2^{1-D(\Gamma)}\left(\frac{2}{3}\right)^{\sum_{i=1}^{k} t_{i}} \prod_{i=1}^{k}\left(b_{i}+1\right) .
\end{gathered}
$$

Since (13) it follows that
$2^{1-D(\Gamma)}\left(\frac{2}{3}\right)^{\sum_{i=1}^{k} t_{i}} \prod_{i=1}^{k}\left(b_{i}+1\right) \geq 2^{1-D(\Gamma)}\left(\frac{2}{3}\right)^{D(\Gamma)-1} \prod_{i=1}^{k}\left(b_{i}+1\right)=3^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right)$.
Hence

$$
g^{-1} \prod_{i=1}^{s}\left(1+a_{i}+\ldots+a_{i}^{b_{i}}\right) \prod_{i=s+1}^{k}\left(a_{i}^{t_{i}}+a_{i}^{t_{i}+1}+\ldots+a_{i}^{b_{i}}\right) \succeq 3^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right)
$$

Finally

$$
g^{-1} \prod_{i=1}^{k}\left(1+a_{i}+\ldots+a_{i}^{b_{i}}\right) \succeq 3^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right)
$$

Proof of Theorem 3.3.

Let $b_{i}=2^{s_{i}}-1$, where $s_{i} \in \mathbb{N}$.
We take $0 \leq t_{i} \leq b_{i}$, where $1 \leq i \leq k$ such that $a_{1}^{t_{1}} a_{2}^{t_{2}} \cdot \ldots \cdot a_{k}^{t_{k}}=g$.
Since $0 \leq t_{i} \leq 2^{s_{i}}-1$ we may find $\epsilon_{j i} \in\{0,1\}$ such that

$$
t_{i}=\sum_{j=1}^{s_{i}} \epsilon_{j i} 2^{j-1}
$$

for $1 \leq i \leq k$.

Using (12) we obtain

$$
\begin{gathered}
a_{i}^{-t_{i}}\left(1+a_{i}+\ldots+a_{i}^{b_{i}}\right)=a_{i}^{-t_{i}} \prod_{j=1}^{s_{i}}\left(1+a_{i}^{2^{j-1}}\right)= \\
=a_{i}^{-\sum_{j=1}^{s_{i}} \epsilon_{j i} i^{j-1}} \prod_{j=1}^{s_{i}}\left(1+a_{i}^{2^{j-1}}\right)=\prod_{j=1}^{s_{i}} a_{i}^{-\epsilon_{j i} i^{j-1}} \prod_{j=1}^{s_{i}}\left(1+a_{i}^{2^{j-1}}\right)=\prod_{j=1}^{s_{i}} a_{i}^{-\epsilon_{j i} 2^{j-1}}\left(1+a_{i}^{2^{j-1}}\right)= \\
=\prod_{j=1}^{s_{i}}\left(a_{i}^{-\epsilon_{j i} 2^{j-1}}+a_{i}^{\left(1-\epsilon_{j j}\right) 2^{j-1}}\right)=\prod_{j=1}^{s_{i}}\left(1+a_{i}^{\eta_{j i} i^{j-1}}\right)
\end{gathered}
$$

where $\eta_{j i}=1-2 \epsilon_{j i} \in\{-1,1\}$.

Thus

$$
g^{-1} \prod_{i=1}^{k}\left(1+a_{i}+\ldots+a_{i}^{b_{i}}\right)=\prod_{i=1}^{k} a_{i}^{-t_{i}}\left(1+a_{i}+\ldots+a_{i}^{b_{i}}\right)=\prod_{i=1}^{k} \prod_{j=1}^{s_{i}}\left(1+a_{i}^{\eta_{j i} j^{j-1}}\right)
$$

By Theorem 1.1.

$$
\prod_{i=1}^{k} \prod_{j=1}^{s_{i}}\left(1+a_{i}^{\eta_{j i} 2^{j-1}}\right) \succeq 2^{1-D(\Gamma)} \prod_{i=1}^{k} \prod_{j=1}^{s_{i}} 2=2^{1-D(\Gamma)} \prod_{i=1}^{k} 2^{s_{i}}=2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right)
$$

which implies

$$
g^{-1} \prod_{i=1}^{k}\left(1+a_{i}+\ldots+a_{i}^{b_{i}}\right) \succeq 2^{1-D(\Gamma)} \prod_{i=1}^{k}\left(b_{i}+1\right) .
$$

[1.] Karol CWALINA and Tomasz SCHOEN, The number of solutions of a homogeneous linear congruence, Acta Arith. 153 (2012), pp. 271-279.
[2.] John E. OLSON, A Combinatorial Problem on Finite Abelian Groups,I. J. Number Theory 1, (1969), pp. 8-10.
[3.] John E. OLSON, A Combinatorial Problem on Finite Abelian Groups,II. J. Number Theory 1, (1969), pp. 195-199.
[4.] Andrzej SCHINZEL, The number of solutions of a linear homogeneous congruence. Diophantine Approximation: Festsch rift for Wolfgang Schmidt (H.-P.Schlickewei, K. Schmidt, R.F. Tichy, eds.), pp. 363-370 (Developments in Mathematics 16, Springer-Verlag, 2008).
[5.] Andrzej SCHINZEL, The number of solutions of a linear homogeneous congruence II. In: Chen, W., Gowers, T., Halberstam, H., Schmidt, W., Vaughan, R.C. (eds.) Analytical Number Theory: Essays in Honour of Klaus F. Roth. Cambridge University Press, 2009, pp. 402-413, with appendix by Jerzy KACZOROWSKI.
[6.] Andrzej SCHINZEL and Maciej ZAKARCZEMNY, On a linear homogeneous congruence., Colloq. Math., 106 (2006), pp. 283-292.
[7.] Michael DRMOTA i Mariusz SKAŁBA, Equidistribution of Divisors modulo m. Preprint.(1997).
[8.] Maciej ZAKARCZEMNY, Number of solutions in a box of a linear homogeneous equation in an Abelian group, Acta Arith. 155 (2012), pp. 227-231.
[9.] Maciej ZAKARCZEMNY, Number of solutions in a box of a linear equation in an Abelian group, (to appear).

Thank you for your attention.

Theorem 1.1 we may rewrite in the form: for all positive integers $n_{1}\left|n_{2}\right| \ldots \mid n_{l}, b_{i}$ and for all integers $a_{i j}$, where $1 \leq i \leq k, 1 \leq j \leq /$ the number of solutions of the system

$$
\left\{\begin{array}{c}
a_{\mathbf{1} 1} x_{\mathbf{1}}+a_{\mathbf{2 1}} x_{\mathbf{2}}+\ldots+a_{k \mathbf{1}} x_{k} \equiv 0\left(\bmod n_{\mathbf{1}}\right), \\
a_{\mathbf{1} \mathbf{2}} x_{\mathbf{1}}+a_{\mathbf{2} \mathbf{2}} x_{\mathbf{2}}+\ldots+a_{k \mathbf{2}} x_{k} \equiv 0\left(\bmod n_{\mathbf{2}}\right), \\
\vdots \\
a_{\mathbf{1} \mid x_{\mathbf{1}}}+a_{\mathbf{2} \mid x_{\mathbf{2}}}+\ldots+a_{k \mid} x_{k} \equiv 0\left(\bmod n_{l}\right),
\end{array}\right.
$$

in non-negative integers $x_{i} \leq b_{i}$ is at least

$$
2^{1-D\left(\mathbb{Z}_{n_{1}} \oplus \mathbb{Z}_{n_{\mathbf{2}}} \oplus \ldots \oplus \mathbb{Z}_{n_{l}}\right)} \prod_{i=1}^{k}\left(b_{i}+1\right)
$$

Known Davenports constants

1. $D\left(\mathbb{Z}_{n}\right)=n$.
2. If $\mathbf{1}<m \mid n$ then $D\left(\mathbb{Z}_{m} \oplus \mathbb{Z}_{n}\right)=m+n-\mathbf{1}$.
3. If $G=\mathbb{Z}_{p^{e} \mathbf{1}_{\mathbf{1}}} \oplus \mathbb{Z}_{p^{e_{\mathbf{2}}}} \oplus \ldots \oplus \mathbb{Z}_{p^{e} e_{r}}$ a finite $p-\operatorname{group}$ then $D(G)=\mathbf{1}+\sum_{i=1}^{r}\left(p^{e^{i}}-\mathbf{1}\right)$.
4. If G is a finite abelian group, then there exist uniquely determined integers $\mathbf{1}<d_{\mathbf{1}}\left|d_{\mathbf{2}}\right| \ldots \mid d_{r}$, such that $G \cong \mathbb{Z}_{d_{\mathbf{1}}} \oplus \mathbb{Z}_{d_{\mathbf{2}}} \oplus \ldots \oplus \mathbb{Z}_{d_{r}}$. We obtain a sequence of $\sum_{i=1}^{r}\left(d_{i}-\mathbf{1}\right)$, hence $D(G) \geq \mathbf{1}+\sum_{i=1}^{r}\left(d_{i}-\mathbf{1}\right)$.
5. It is unknown whether $D(G)=\mathbf{1}+\sum_{i=1}^{r}\left(d_{i}-1\right)$ holds true for all groups of rank $r=3$.
6. $D\left(\mathbb{Z}_{\mathbf{3}} \oplus \mathbb{Z}_{\mathbf{3}} \oplus \mathbb{Z}_{\mathbf{3 d}}\right)=\mathbf{3 d}+4$.
7. Currently (2008) the best upper bound for $D(G)$ is due to Van Emde Boas and Kruyswijk and Meshulam: $D(G) \leq n+\left[n \log \frac{|G|}{n}\right]$, where n is the maximum possible order of an element also known as the exponent of the group.
8. $D\left(\mathbb{Z}_{\mathbf{2}} \oplus \mathbb{Z}_{\mathbf{2}} \oplus \mathbb{Z}_{\mathbf{2}} \oplus \mathbb{Z}_{\mathbf{2} n}\right)=2 n+3$, with odd n.
9. $D\left(\mathbb{Z}_{m} \oplus \mathbb{Z}_{n} \oplus \mathbb{Z}_{n} \oplus \mathbb{Z}_{\mathbf{2} n}\right)>\mathbf{1}+(m-1)+(n-1)+(n-1)+(2 n-1)$, for every odd n, m with $m \geq 3$ and $m \mid n$.

Known Davenports constants of non-abelian finite groups

1. Dihedral groups. If $D_{\mathbf{2} n}=\left\langle x, y: x^{\mathbf{2}}=y^{n}=\mathbf{1}, y x=x y^{-\mathbf{1}}\right\rangle$, then $D\left(D_{\mathbf{2} n}\right)=n+\mathbf{1}$,
2. Dicyclic groups. If $Q_{4 n}=\left\langle x, y: x^{2}=y^{n}, y^{2 n}=1, y x=x y^{-1}\right\rangle$, then $D\left(Q_{4 n}\right)=2 n+\mathbf{1}$,
3. A non-abelian group of order $p q$ exists only when $p \mid q-1$, and such a group is unique. $G_{p q}=\left\langle x, y: x^{p}=y^{q}=1, y x=x y^{s}\right\rangle$, where $s^{p} \equiv \mathbf{1} \bmod q, s \not \equiv \mathbf{1} \bmod q$. We have $D\left(G_{p q}\right)=p+q-1$.
J. BASS Improving the Erdös - Ginzburg - Ziv theorem for some non-abelian groups J. Number Theory, 126 (2007), pp. 217-236

Group ring

Group ring $\mathbb{Q}[\Gamma]$ is a \mathbb{Q}-vector space with basis Γ and with multiplication defined distributively using the given multiplication of Γ.

$$
\left(\sum_{g \in \Gamma} \alpha_{g} g\right) \cdot\left(\sum_{g \in \Gamma} \beta_{g} g\right)=\sum_{x \in \Gamma}\left(\sum_{g h=x} \alpha_{g} \beta_{h}\right) x
$$

We have $\sum_{g \in \Gamma} \alpha_{g} g=\sum_{g \in \Gamma} \beta_{g} g$ iff $\alpha_{g}=\beta_{g}$ for all $g \in \Gamma$.
Instead $\sum_{g \in \Gamma} 0 g$ we write 0 .
Instead $1 g$ we write g.
Instead $(-\alpha) g$ we write $-\alpha g$.
We denoting the group unit 1_{Γ} and the unit element of the ring \mathbb{Q} by the same symbol 1 .
We denoting addition operation in $\mathbb{Q}[\Gamma]$ and in \mathbb{Q} by the same symbol.
If $1_{\Gamma}=1$, then the additive group of $\mathbb{Q}[\Gamma]$ becomes an extension of the additive group of \mathbb{Q}, thus the use of the same symbol + is legitimate.

