Number of solutions in a box of a linear equation in an Abelian group

Maciej Zakarczemny

Cracow University of Technology, Poland

October 7, 2016

Karol Cwalina and Tomasz Schoen [1] have recently proved the following conjecture of Andrzej Schinzel [4]: the number of solutions of the congruence

$$a_1x_1+\ldots+a_kx_k\equiv 0\,(\bmod n)$$

in the box $0 \le x_i \le b_i$, where b_i are positive integers, is at least

$$2^{1-n} \prod_{i=1}^{k} (b_i + 1).$$

Using a completely different method we shall prove the following more general statement, also conjectured by Schinzel [4].

Theorem 1.1.

For every finite Abelian group Γ , for all $a_1, \ldots, a_k \in \Gamma$, and for all positive integers b_1, \ldots, b_k the number of solutions of the equation

$$\sum_{i=1}^k a_i x_i = 0$$

in non-negative integers $x_i < b_i$ is at least

$$2^{1-D(\Gamma)} \prod_{i=1}^{k} (b_i + 1), \tag{1}$$

where $D(\Gamma)$ is the Davenport constant of the group Γ (see Definition 2.1. below).

Let Γ be a finite Abelian group, with multiplicative notation.

Defnition 2.1.

Define the *Davenport constant* $D(\Gamma)$ to be the smallest positive integer n such that, for any sequence g_1, \ldots, g_n of group elements, there exist a non-empty sequence of indices

$$1 \leq i_1 < \ldots < i_t \leq n$$

such that

$$g_{i_1}\cdot\ldots\cdot g_{i_t}=1.$$

For a group with multiplicative notation, Theorem 1.1 has the form: for every finite Abelian group Γ , for all $a_1, \ldots, a_k \in \Gamma$, and for all positive integers b_1, \ldots, b_k the number of solutions of the equation

$$\prod_{i=1}^k a_i^{x_i} = 1$$

in non-negative integers $x_i \leq b_i$ is at least

$$2^{1-D(\Gamma)} \prod_{i=1}^{k} (b_i + 1). \tag{2}$$

By the definition of the Davenport constant, we may find $g_1,\ldots,g_{D(\Gamma)-1}\in\Gamma$ such that any product of a non-empty subsequence of this sequence is not equal 1 in Γ .

Since the number of solutions of the equation $\prod_{i=1}^{D(\Gamma)-1} g_i^{x_i} = 1$, where $x_i = 0$ or

$$x_i = 1$$
, is equal $1 = 2^{1-D(\Gamma)} \prod_{i=1}^{D(\Gamma)-1} (1+1)$ we obtain:

Remark 2.2.

In Theorem 1.1, $2^{1-D(\Gamma)}$ is the best possible coefficient independent of a_i , b_i and dependent only on Γ .

Lemma 2.3.

For $n \ge 1$ we have the following identity in $\mathbb{Q}[x]$ and in the group ring $\mathbb{Q}[\Gamma]$.

$$1 + x + x^{2} + \ldots + x^{n} = \sum_{j=0}^{n} 2^{j-n-1} (1+x^{j})(1+x)^{n-j}.$$
 (3)

Proof. We proceed by induction on n.

(Elements of $\mathbb{Q}[\Gamma]$ are sometimes written as what are called "formal linear combinations of elements of Γ , with coefficients in \mathbb{Q} " where this doesn't cause confusion)

Definition 2.4.

For an element $\sum\limits_{g\in \Gamma} N_g g$ of the group ring $\mathbb{Q}[\Gamma]$ and a number $n\in \mathbb{Q}$ we write

$$\sum_{g \in \Gamma} N_g g \succeq n \text{ iff } N_1 \geq n.$$

Lemma 2.5.

Theorem 1.1 in multiplicative notation is equivalent to the statement: for every finite Abelian group Γ , for all $a_1, \ldots, a_k \in \Gamma$, and for all positive integers b_1, \ldots, b_k we have relation:

$$\prod_{i=1}^{k} (1 + a_i + \ldots + a_i^{b_i}) \succeq 2^{1-D(\Gamma)} \prod_{i=1}^{k} (b_i + 1), \tag{4}$$

where $D(\Gamma)$ is the Davenport constant of the group Γ .

Proof. Indeed, the number of solutions of the equation $\prod_{i=1}^k a_i^{x_i} = 1$ in non-negative integers $x_i < b_i$ is equal to N_1 , where

$$\prod_{i=1}^k (1+a_i+\ldots+a_i^{b_i})=\sum_{g\in\Gamma} N_g g.$$

We have $N_1 \geq 2^{1-D(\Gamma)} \prod_{i=1}^k (b_i+1)$ if and only if relation (4) holds.

Lemma 2.6.

Let Γ be a finite Abelian group. For all $a_1, \ldots, a_k \in \Gamma$ we have

$$(1+a_1)(1+a_2)\cdot\ldots\cdot(1+a_k)\succeq 2^{1-D(\Gamma)}\cdot 2^k.$$
 (5)

Proof. For the completeness of the exposition we provide Olson's proof [3]. We proceed by induction on k. For $k \leq D(\Gamma) - 1$ we have

$$(1+a_1)(1+a_2)\cdot\ldots\cdot(1+a_k)\succeq 1\geq 2^{1-D(\Gamma)}\cdot 2^k$$

and the assertion is true.

Assume it is true for the number of factors less than k, where $k > D(\Gamma) - 1$. Hence $k \geq D(\Gamma)$. By the definition of the Davenport constant we may assume, without loss of generality, that

$$a_1 \cdot \ldots \cdot a_t = 1$$
, for some $1 \leq t \leq D(\Gamma)$.

By the inductive assumption

$$\prod_{i=2}^{t} (1+a_i^{-1}) \prod_{i=t+1}^{k} (1+a_i) \succeq 2^{1-D(\Gamma)} \cdot 2^{k-1},$$

$$\prod_{i=2}^{k} (1+a_i) \succeq 2^{1-D(\Gamma)} \cdot 2^{k-1}.$$

Hence

$$\begin{split} \prod_{i=1}(1+a_i) &= \prod_{i=2}(1+a_i) + a_1 \prod_{i=2}(1+a_i) \\ &= \prod_{i=2}^k (1+a_i) + a_1 a_2 \cdot \ldots \cdot a_t \prod_{i=2}^t (1+a_i^{-1}) \prod_{i=t+1}^k (1+a_i) \\ &= \prod_{i=1}^k (1+a_i) + \prod_{i=1}^t (1+a_i^{-1}) \prod_{i=t+1}^k (1+a_i) \succeq 2^{1-D(\Gamma)} \cdot 2^{k-1} + 2^{1-D(\Gamma)} \cdot 2^{k-1} = 2^{1-D(\Gamma)} \cdot 2^k. \end{split}$$

By Lemma 2.5. it suffices to prove:

Theorem

For every finite Abelian group Γ , for all $a_1, \ldots, a_k \in \Gamma$, and for all positive integers b_1, \ldots, b_k we have

$$\prod_{i=1}^{k} (1 + a_i + \ldots + a_i^{b_i}) \succeq 2^{1-D(\Gamma)} \prod_{i=1}^{k} (b_i + 1),$$

where $D(\Gamma)$ is the Davenport constant of the group Γ .

Proof. We use the identity (3) to get

$$\begin{split} \prod_{i=1}^k (1+a_i+\ldots+a_i^{b_i}) &= \prod_{i=1}^k \sum_{j=0}^{b_i} 2^{j-b_i-1} (1+a_i^{j}) (1+a_i)^{b_i-j} \\ &= \sum_{\substack{0 \le j_1 \le b_1 \\ 0 \le j_2 \le b_2}} \prod_{i=1}^k 2^{j_i-b_i-1} (1+a_i^{j_i}) (1+a_i)^{b_i-j_i}. \\ &\vdots \\ 0 \le j_k \le b_k \end{split}$$

(6)

By Lemma 2.6. we obtain

$$\sum_{\substack{0 \leq j_1 \leq b_1 \ 0 \leq j_2 \leq b_2}} \prod_{i=1}^k 2^{j_i - b_i - 1} (1 + a_i^{j_i}) (1 + a_i)^{b_i - j_i}$$
 $\geq 2^{1 - D(\Gamma)} \sum_{\substack{0 \leq j_1 \leq b_1 \ 0 \leq j_2 \leq b_2}} \prod_{i=1}^k 2^{j_i - b_i - 1} 2^{1 + b_i - j_i} = 2^{1 - D(\Gamma)} \sum_{\substack{0 \leq j_1 \leq b_1 \ 0 \leq j_2 \leq b_2}} 1$
 \vdots
 $0 \leq j_k \leq b_k$
 $0 \leq j_k \leq b_k$
 $0 \leq j_k \leq b_k$
 $0 \leq j_k \leq b_k$

Thus

$$\prod_{i=1}^k (1 + a_i + \ldots + a_i^{b_i}) \succeq 2^{1-D(\Gamma)} \prod_{i=1}^k (b_i + 1).$$

We have proved in $\left[9\right]$ the following two statements.

Theorem 3.1.

For every finite Abelian group Γ , for all $g, a_1, \ldots, a_k \in \Gamma$, if there exists a solution of the equation $\sum\limits_{i=1}^k a_i x_i = g$ in non-negative integers $x_i \leq b_i$, where b_i are positive integers, then the number of such solutions is at least

$$3^{1-D(\Gamma)} \prod_{i=1}^{k} (b_i + 1). \tag{7}$$

Remark 3.2.

Let $\Gamma = n\mathbb{Z}_2$ be a direct product of n cyclic groups of order two, a_1, \ldots, a_n a basis for Γ . Then the number of solutions of the equation

$$\sum_{i=1}^n a_i x_i = \sum_{i=1}^n a_i$$

in non-negative integers $x_i \leq b_i = 2$, equals 1. Since $D(\Gamma) = n+1$ (see Olson [2]) and $1 = 3^{1-D(\Gamma)} \prod_{i=1}^n (2+1)$, we get that $3^{1-D(\Gamma)}$ is the best possible coefficient independent of a_i, b_i, g and dependent only on Γ .

Theorem 3.3.

For every finite Abelian group Γ , for all $g, a_1, \ldots, a_k \in \Gamma$, if there exists a solution of the equation $\sum\limits_{i=1}^k a_i x_i = g$ in non-negative integers $x_i \leq b_i$, where $b_i \in \{2^s-1: s \in \mathbb{N}\}$, then the number of such solutions is at least

$$2^{1-D(\Gamma)} \prod_{i=1}^{k} (b_i + 1). \tag{8}$$

Lemma 3.4.

For every finite Abelian group Γ with multiplicative notation and for all $a_1, \ldots, a_k, g \in \Gamma$, the number of solutions of the equation $\prod_{i=1}^k a_i^{x_i} = g$ in non-negative integers $x_i \leq b_i$ is equal to N_1 , where

$$g^{-1}\prod_{i=1}^{k}(1+a_i+\ldots+a_i^{b_i})=\sum_{h\in\Gamma}N_hh,$$

is an identity in $\mathbb{Q}[\Gamma]$.

Proof. We interpret the equation $g^{-1}\prod_{i=1}^k (1+a_i+\ldots+a_i^{b_i})=\sum_{h\in\Gamma} N_h h$ combinatorially. For $g\in\Gamma$ look at all sequences $a_1^{x_1}, a_2^{x_2}, \ldots, a_k^{x_k}$, that have product g, where $x_i\leq b_i$ are non-negative integers. Then N_1 count those sequences. Therefore the number of solutions of the equation $\prod_{i=1}^k a_i^{x_i}=g$ in non-negative integers $x_i\leq b_i$ is equal to N_1 .

Lemma 3.5.

Theorem 3.1. with multiplicative notation is equivalent to the statement: for every finite Abelian group Γ , for all $g, a_1, \ldots, a_k \in \Gamma$, if there exists a solution of the equation $\prod_{i=1}^k a_i^{x_i} = g$ in non-negative integers $x_i \leq b_i$, where b_i are positive integers, then we have:

$$g^{-1}\prod_{i=1}^{k}(1+a_i+\ldots+a_i^{b_i})\succeq 3^{1-D(\Gamma)}\prod_{i=1}^{k}(b_i+1), \tag{9}$$

where $D(\Gamma)$ is the Davenport constant of the group Γ . *Proof.* This follows from Lemma 3.4 and Definition 2.4.

Lemma 3.6

Theorem 3.3. with multiplicative notation is equivalent to the statement: for every finite Abelian group Γ , for all $g, a_1, \ldots, a_k \in \Gamma$, and for all positive integers $b_1, b_2, \ldots, b_k \in \{2^s - 1 : s \in \mathbb{N}\}, \text{ if there exists a solution of the equation}$ $\prod a_i^{x_i} = g$ in non-negative integers $x_i \leq b_i$, then we have relation:

$$g^{-1}\prod_{i=1}^{k}(1+a_i+\ldots+a_i^{b_i})\succeq 2^{1-D(\Gamma)}\prod_{i=1}^{k}(b_i+1).$$
 (10)

Proof. This follows from Lemma 3.4 and Definition 2.4.

Lemma 3.7.

For every finite Abelian group Γ and for all $g, a_1, a_2, \ldots, a_k \in \Gamma$, if there exists a solution of the equation $\prod_{i=1}^k a_i^{x_i} = g$ in non-negative integers $x_i \leq 1$, then

$$g^{-1} \prod_{i=1}^{k} (1+a_i) \succeq 2^{1-D(\Gamma)} \cdot 2^k. \tag{11}$$

Proof. We may assume that $\prod_{i=1}^{l} a_i = g$, where $1 \le t \le k$.

We have the identities

$$g^{-1}\prod_{i=1}^{k}(1+a_i)=g^{-1}\prod_{i=1}^{t}a_i\prod_{i=1}^{t}(1+a_i^{-1})\prod_{i=t+1}^{k}(1+a_i)=\prod_{i=1}^{t}(1+a_i^{-1})\prod_{i=t+1}^{k}(1+a_i).$$

By Theorem 1.1

$$\prod_{i=1}^{t} (1+a_i^{-1}) \prod_{i=t+1}^{k} (1+a_i) \succeq 2^{1-D(\Gamma)} 2^k.$$

This implies

$$g^{-1}\prod_{i=1}^k (1+a_i) \succeq 2^{1-D(\Gamma)}2^k.$$

Lemma 3.8.

If $0 \le t < b$, where t, b are integers, then $b - t + 1 \ge (\frac{2}{3})^t (b + 1)$.

Proof. We verify by differentiation that the function $f(x)=2(\frac{3}{2})^x-x-2$ is increasing in the interval $(1,\infty)$. Since $f(0)=f(1)=0, f(2)=\frac{1}{2}$ we get $2(\frac{3}{2})^t \geq t+2$ for non-negative integers t. Hence $1-\frac{t}{b+1} \geq 1-\frac{t}{t+2} \geq (\frac{2}{3})^t,$ and thus $b-t+1 \geq (\frac{2}{3})^t(b+1).$

Lemma 3.9.

For $s \geq 1$ we have the following identity in $\mathbb{Q}[\Gamma]$:

$$1 + x + x^{2} + \ldots + x^{2^{s} - 1} = \prod_{j=1}^{s} (1 + x^{2^{j-1}}).$$
 (12)

Proof. We proceed by induction on s.

Proof of Theorem 3.1.

We may find $0 \le t_i \le b_i$, where $1 \le i \le k$, such that $a_1^{t_1} a_2^{t_2} \cdot \ldots \cdot a_k^{t_k} = g$. By definition of the Davenport constant we may assume that

$$\sum_{i=1}^{k} t_i \le D(\Gamma) - 1. \tag{13}$$

Let $t_i = b_i$ for $1 \le i \le s \le k$; $t_i < b_i$ for $s + 1 \le i \le k$; if $t_i < b_i$ for $1 \le i \le k$, then we take s = 0.

We have the identities

$$egin{aligned} g^{-1} \prod_{i=1}^s (1+a_i+\ldots+a_i^{b_i}) \prod_{i=s+1}^k (a_i^{\ t_i}+a_i^{\ t_i+1}+\ldots+a_i^{b_i}) = \ &= \Big(\Big(\prod_{i=1}^s a_i^{b_i}\Big) \Big(\prod_{i=s+1}^k a_i^{t_i}\Big) \Big)^{-1} \prod_{i=1}^s (1+a_i+\ldots+a_i^{b_i}) \prod_{i=s+1}^k (a_i^{\ t_i}+a_i^{\ t_i+1}+\ldots+a_i^{b_i}) = \ &= \prod_{i=1}^s (1+a_i^{-1}+\ldots+(a_i^{-1})^{b_i}) \prod_{i=s+1}^k (1+a_i+\ldots+a_i^{b_i-t_i}). \end{aligned}$$

By Theorem 1.1.

$$\prod_{i=1}^{s} (1 + a_i^{-1} + \ldots + (a_i^{-1})^{b_i}) \prod_{i=s+1}^{k} (1 + a_i + \ldots + a_i^{b_i - t_i})$$

$$\geq 2^{1-D(\Gamma)} \Big(\prod_{i=1}^{s} (b_i + 1) \Big) \Big(\prod_{i=s+1}^{k} (b_i - t_i + 1) \Big).$$

We have by Lemma 3.8. that

$$2^{1-D(\Gamma)} \Big(\prod_{i=1}^{s} (b_i + 1) \Big) \Big(\prod_{i=s+1}^{k} (b_i - t_i + 1) \Big)$$

$$\geq 2^{1-D(\Gamma)} \Big(\prod_{i=1}^{s} (b_i + 1) \Big) \Big(\prod_{i=s+1}^{k} (\frac{2}{3})^{t_i} (b_i + 1) \Big) =$$

$$= 2^{1-D(\Gamma)} (\frac{2}{3})^{\sum_{i=s+1}^{k} t_i} \prod_{i=1}^{k} (b_i + 1) \geq 2^{1-D(\Gamma)} (\frac{2}{3})^{\sum_{i=1}^{k} t_i} \prod_{i=1}^{k} (b_i + 1).$$

Since (13) it follows that

$$2^{1-D(\Gamma)}(\frac{2}{3})^{\sum_{i=1}^k t_i} \prod_{i=1}^k (b_i+1) \geq 2^{1-D(\Gamma)}(\frac{2}{3})^{D(\Gamma)-1} \prod_{i=1}^k (b_i+1) = 3^{1-D(\Gamma)} \prod_{i=1}^k (b_i+1).$$

Hence

$$g^{-1}\prod_{i=1}^{s}(1+a_i+\ldots+a_i^{b_i})\prod_{i=s+1}^{k}(a_i^{t_i}+a_i^{t_i+1}+\ldots+a_i^{b_i})\succeq 3^{1-D(\Gamma)}\prod_{i=1}^{k}(b_i+1).$$

Finally

$$g^{-1}\prod_{i=1}^k (1+a_i+\ldots+a_i^{b_i})\succeq 3^{1-D(\Gamma)}\prod_{i=1}^k (b_i+1).$$

Proof of Theorem 3.3.

Let $b_i=2^{s_i}-1$, where $s_i\in\mathbb{N}$. We take $0\leq t_i\leq b_i$, where $1\leq i\leq k$ such that $a_1^{t_1}a_2^{t_2}\cdot\ldots\cdot a_k^{t_k}=g$. Since $0\leq t_i\leq 2^{s_i}-1$ we may find $\epsilon_{ji}\in\{0,1\}$ such that

$$t_i = \sum_{j=1}^{s_i} \epsilon_{ji} 2^{j-1}$$

for $1 \le i \le k$.

Using (12) we obtain

$$a_i^{-t_i}(1+a_i+\ldots+a_i^{b_i})=a_i^{-t_i}\prod_{j=1}^{s_i}(1+a_i^{2^{j-1}})=$$

$$= a_i^{-\sum_{j=1}^{s_i} \epsilon_{ji} 2^{j-1}} \prod_{j=1}^{s_i} (1 + a_i^{2^{j-1}}) = \prod_{j=1}^{s_i} a_i^{-\epsilon_{ji} 2^{j-1}} \prod_{j=1}^{s_i} (1 + a_i^{2^{j-1}}) = \prod_{j=1}^{s_i} a_i^{-\epsilon_{ji} 2^{j-1}} (1 + a_i^{2^{j-1}}) = \prod_{j=1}^{s_i} (a_i^{-\epsilon_{ji} 2^{j-1}} + a_i^{(1-\epsilon_{ji})2^{j-1}}) = \prod_{j=1}^{s_i} (1 + a_i^{\eta_{ji} 2^{j-1}}),$$

where $\eta_{ji} = 1 - 2\epsilon_{ji} \in \{-1, 1\}.$

Thus

$$g^{-1}\prod_{i=1}^k(1+a_i+\ldots+a_i^{b_i})=\prod_{i=1}^ka_i^{-t_i}(1+a_i+\ldots+a_i^{b_i})=\prod_{i=1}^k\prod_{i=1}^{s_i}(1+a_i^{\eta_{ji}2^{j-1}}).$$

By Theorem 1.1.

$$\prod_{i=1}^k \prod_{j=1}^{s_i} (1 + a_i^{\eta_{ji}2^{j-1}}) \succeq 2^{1-D(\Gamma)} \prod_{i=1}^k \prod_{j=1}^{s_i} 2 = 2^{1-D(\Gamma)} \prod_{i=1}^k 2^{s_i} = 2^{1-D(\Gamma)} \prod_{i=1}^k (b_i + 1),$$

which implies

$$g^{-1}\prod_{i=1}^k (1+a_i+\ldots+a_i^{b_i})\succeq 2^{1-D(\Gamma)}\prod_{i=1}^k (b_i+1).$$

- Karol CWALINA and Tomasz SCHOEN, The number of solutions of a homogeneous linear congruence, Acta Arith. 153 (2012), pp. 271-279.
- [2.] John E. OLSON, A Combinatorial Problem on Finite Abelian Groups, I. J. Number Theory 1, (1969), pp. 8-10.
- [3.] John E. OLSON, A Combinatorial Problem on Finite Abelian Groups, II. J. Number Theory 1, (1969), pp. 195-199.
- [4.] Andrzej SCHINZEL, The number of solutions of a linear homogeneous congruence. Diophantine Approximation: Festschrift for Wolfgang Schmidt (H.-P.Schlickewei, K. Schmidt, R.F. Tichy, eds.), pp. 363-370 (Developments in Mathematics 16, Springer-Verlag, 2008).
- [5.] Andrzej SCHINZEL, The number of solutions of a linear homogeneous congruence II. In: Chen, W., Gowers, T., Halberstam, H., Schmidt, W., Vaughan, R.C. (eds.) Analytical Number Theory: Essays in Honour of Klaus F. Roth. Cambridge University Press, 2009, pp. 402-413, with appendix by Jerzy KACZOROWSKI.
- [6.] Andrzej SCHINZEL and Maciej ZAKARCZEMNY, On a linear homogeneous congruence., Colloq. Math., 106 (2006), pp. 283-292.
- [7.] Michael DRMOTA i Mariusz SKAŁBA, Equidistribution of Divisors modulo m. Preprint (1997).
- [8.] Maciej ZAKARCZEMNY, Number of solutions in a box of a linear homogeneous equation in an Abelian group, Acta Arith. 155 (2012), pp. 227-231.
- [9.] Maciej ZAKARCZEMNY, Number of solutions in a box of a linear equation in an Abelian group, (to appear).

Thank you for your attention.

Theorem 1.1 we may rewrite in the form: for all positive integers $n_1 \mid n_2 \mid \ldots \mid n_l, b_i$ and for all integers a_{ii} , where $1 \le i \le k, 1 \le j \le l$ the number of solutions of the system

$$\begin{cases} a_{11} x_1 + a_{21} x_2 + \ldots + a_{k1} x_k \equiv 0 \pmod{n_1}, \\ a_{12} x_1 + a_{22} x_2 + \ldots + a_{k2} x_k \equiv 0 \pmod{n_2}, \\ \vdots \\ a_{1/k1} + a_{2/k2} + \ldots + a_{k/k} \equiv 0 \pmod{n_j}, \end{cases}$$

in non-negative integers $x_i \leq b_i$ is at least

$$2^{1-D(\mathbb{Z}_{n_1}\oplus\mathbb{Z}_{n_2}\oplus\ldots\oplus\mathbb{Z}_{n_l})}\prod_{i=1}^k(b_i+1).$$

Known Davenports constants

- 1. $D(\mathbb{Z}_n) = n$.
- 2. If $1 < m \mid n$ then $D(\mathbb{Z}_m \oplus \mathbb{Z}_n) = m + n 1$.
- 3. If $G = \mathbb{Z}_{p^{e_1}} \oplus \mathbb{Z}_{p^{e_2}} \oplus \ldots \oplus \mathbb{Z}_{p^{e_r}}$ a finite p group then $D(G) = 1 + \sum\limits_{i=1}^r (p^{e^i} 1)$.
- 4. If G is a finite abelian group, then there exist uniquely determined integers $1 < d_1 \mid d_2 \mid \ldots \mid d_r$, such that $G \cong \mathbb{Z}_{d_1} \oplus \mathbb{Z}_{d_2} \oplus \ldots \oplus \mathbb{Z}_{d_r}$. We obtain a sequence of $\sum\limits_{i=1}^r (d_i-1)$, hence $D(G) \geq 1 + \sum\limits_{i=1}^r (d_i-1)$.
- 5. It is unknown whether $D(G)=1+\sum\limits_{i=1}^{r}(d_i-1)$ holds true for all groups of rank r=3.
- 6. $D(\mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{3d}) = 3d + 4$.
- 7. Currently (2008) the best upper bound for D(G) is due to Van Emde Boas and Kruyswijk and Meshulam: $D(G) \le n + \left[n \log \frac{|G|}{n} \right]$, where n is the maximum possible order of an element also known as the exponent of the group.
- 8. $D(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{2n}) = 2n + 3$, with odd n.
- $9. \quad D(\mathbb{Z}_m \oplus \mathbb{Z}_n \oplus \mathbb{Z}_n \oplus \mathbb{Z}_{2n}) > 1 + (m-1) + (n-1) + (n-1) + (2n-1), \text{ for every odd } n, m \text{ with } m \geq 3 \text{ and } m \mid n.$

Known Davenports constants of non-abelian finite groups

- 1. Dihedral groups. If $D_{2n} = \langle x, y : x^2 = y^n = 1, yx = xy^{-1} \rangle$, then $D(D_{2n}) = n + 1$,
- 2. Dicyclic groups. If $Q_{4n} = \langle x, y : x^2 = y^n, y^{2n} = 1, yx = xy^{-1} \rangle$, then $D(Q_{4n}) = 2n + 1$,
- 3. A non-abelian group of order pq exists only when p|q-1, and such a group is unique. $G_{pq}=\langle x,y:x^p=y^q=1,yx=xy^s\rangle,$ where $s^p\equiv 1\mod q,$ $s\not\equiv 1\mod q.$ We have $D(G_{pq})=p+q-1.$

J. BASS Improving the Erdös - Ginzburg - Ziv theorem for some non-abelian groups J. Number Theory, 126 (2007), pp. 217 - 236

Group ring

Group ring $\mathbb{Q}[\Gamma]$ is a \mathbb{Q} -vector space with basis Γ and with multiplication defined distributively using the given multiplication of Γ .

$$\left(\sum_{g\in\Gamma}\alpha_gg\right)\cdot\left(\sum_{g\in\Gamma}\beta_gg\right)=\sum_{x\in\Gamma}\left(\sum_{gh=x}\alpha_g\beta_h\right)x.$$

We have $\sum_{g \in \Gamma} \alpha_g g = \sum_{g \in \Gamma} \beta_g g$ iff $\alpha_g = \beta_g$ for all $g \in \Gamma$.

Instead $\sum_{\sigma \in \Gamma} 0g$ we write 0.

Instead 1g we write g.

Instead $(-\alpha)g$ we write $-\alpha g$.

We denoting the group unit 1_{Γ} and the unit element of the ring ${\mathbb Q}$ by the same symbol 1.

We denoting addition operation in $\mathbb{Q}[\Gamma]$ and in \mathbb{Q} by the same symbol.

If $1_{\Gamma} = 1$, then the additive group of $\mathbb{Q}[\Gamma]$ becomes an extension of the additive group of \mathbb{Q} , thus the use of the same symbol + is legitimate.