Exercises

1. Compute $(935,1122)$.
2. Compute $(168,252,294)$.
3. Find integers x and y such that $13 x+15 y=1$.
4. Construct four relatively prime integers a, b, c, d such that no three of them are relatively prime.
5. Prove that $(n, n+2)=1$ is n is odd and $(n, n+2)=2$ is n is even.
6. Prove that $2 n+5$ and $3 n+7$ are relatively prime for every integer n.
7. Prove that $3 n+2$ and $5 n+3$ are relatively prime for every integer n.
8. Prove that $n!+1$ and $(n+1)!+1$ are relatively prime for every positive integer n.
9. Let a, b, and d be positive integers. Prove that if $(a, b)=1$ and d divides a, then $(d, b)=1$.
10. Let a and b be positive integers. Prove that $(a, b)=a$ if and only if a divides b.
11. Let a, b, c, d be integers such that $a d-b c=1$. For integers u and v, define

$$
u^{\prime}=a u+b v
$$

and

$$
v^{\prime}=c u+d v
$$

Prove that $(u, v)=\left(u^{\prime}, v^{\prime}\right)$.
Hint: Express u and v in terms of u^{\prime} and v^{\prime}.
12. Let $G=\{2 \mathbf{Z}, 1+2 \mathbf{Z}\}$, where $2 \mathbf{Z}$ denotes the set of even integers and $1+2 \mathbf{Z}$ the set of odd integers. Define addition of elements of G by

$$
2 \mathbf{Z}+2 \mathbf{Z}=(1+2 \mathbf{Z})+(1+2 \mathbf{Z})=2 \mathbf{Z}
$$

and

$$
2 \mathbf{Z}+(1+2 \mathbf{Z})=(1+2 \mathbf{Z})+2 \mathbf{Z}=1+2 \mathbf{Z}
$$

Prove that G is an additive abelian group.
13. Use the Euclidean algorithm to compute the greatest common divisor of 35 and 91 , and to express $(35,91)$ as a linear combination of 35 and 91 . Compute the simple continued fraction for $91 / 35$.
14. Use the Euclidean algorithm to write the greatest common divisor of 4534 and 1876 as a linear combination of 4534 and 1876. Compute the simple continued fraction for $4534 / 1876$.
15. Use the Euclidean algorithm to compute the greatest common divisor of 1197 and 14280 , and to express $(1197,14280)$ as a linear combination of 1197 and 14280 .

Solutions

Exercise 1, solution.
We have $1122=1 \cdot 935+187,935=5 \cdot 187$. Hence $(1122,935)=187$.
Exercise 2, solution 1.
We have $252=1 \cdot 168+84,168=2 \cdot 84$. Hence $(252,168)=84$.
We have $294=3 \cdot 84+42,84=2 \cdot 42$. Hence $(294,84)=42$.

Note that $(168,252,294) \mid(252,168)$. Thus $(168,252,294)|(294,84),(168,252,294)| 42$.
On the other hand $42 \mid(168,252,294)$, therefore we get equality $42=(168,252,294)$. Exercise 2 , solution 2.
We have factorization into prime numbers

$$
168=2^{3} \cdot 3 \cdot 7,252=2^{2} \cdot 3^{2} \cdot 7,294=2 \cdot 3 \cdot 7^{2} .
$$

Hence $(168,252,294)=2 \cdot 3 \cdot 7$.
Exercise 3, solution.
We have $15=1 \cdot 13+2,13=6 \cdot 2+1$.
Hence $2=15-1 \cdot 13$, and then substitute the result into the other equation $1=13-6 \cdot 2$, we get

$$
1=13-6(15-1 \cdot 13)=7 \cdot 13-6 \cdot 15 .
$$

Thus $x=7, y=-6$.
Exercise 6, solution.
We have $(2 n+5,3 n+7)=1$, since $3(2 n+5)-2(3 n+7)=1$.
Exercise 7, solution.
We have $(3 n+2,5 n+3)=1$, since $5(3 n+2)-3(5 n+3)=1$.
Exercise 8, solution.
By definition of the greatest common divisor $(n!+1,(n+1)!+1) \mid(n!+1)$.
We have $(n!+1,(n+1)!+1) \mid n$, since $(n+1)(n!+1)-1((n+1)!+1)=n$.
$\operatorname{But}(n, n!+1)=1$, hence $(n!+1,(n+1)!+1)=1$.
Exercise 11, solution.

$$
u^{\prime}=a u+b v \quad u=d u^{\prime}-b v^{\prime}
$$

$v^{\prime}=c u+d v$.

$$
v=-c u^{\prime}+a v^{\prime}
$$

Exercise 13,14,15, solution.
cfdisrep(cf(91/35));
$2+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}$
$\operatorname{gcd}(91,35) ;$
7

cfdisrep(cf(14280/1197));
$11+\frac{1}{1+\frac{1}{13+\frac{1}{4}}}$
$\operatorname{gcd}(14280,1197)$;
21

