Exercises 8

Exercises

1. Prove that

$$
3^{512} \equiv 1 \quad(\bmod 1024)
$$

2. Find the remainder when 7^{51} is divided by 144 .

3 . Find the remainder when $2^{10^{8}}$ is divided by 31 .
4. Compute the order of 2 with respect to the prime moduli $3,5,7,11$, 13,17 , and 19
5. Compute the order of 10 with respect to the modulus 7 .
6. Let r_{i} denote the least nonnegative residue of $10^{i}(\bmod 7)$. Compute r_{i} for $i=1, \ldots, 6$. Compute the decimal expansion of the fraction $1 / 7$ without using a calculator. Can you find where the numbers r_{1}, \ldots, r_{6} appear in the process of dividing 7 into 1 ?
7. Compute the order of 10 modulo 13 . Compute the period of the fraction 1/13
8. Let p be prime and a an integer not divisible by p. Prove that if $a^{2^{n}} \equiv-1 \quad(\bmod p)$, then a has order 2^{n+1} modulo p
9. Let m be a positive integer not divisible by 2 or 5 . Prove that the decimal expansion of the fraction $1 / m$ is periodic with period equal to the order of 10 modulo m.
10. Prove that the decimal expansion of $1 / m$ is finite if and only if the prime divisors of m are 2 and 5 .
11. Prove that 10 has order 22 modulo 23 . Deduce that the decimal expansion of $1 / 23$ has period 22 .
12. Prove that if p is a prime number congruent to 1 modulo 4 , then there exists an integer x such that $x^{2} \equiv-1 \quad(\bmod p)$
Hint: Observe that

$$
\begin{aligned}
(p-1)! & \equiv \prod_{j=1}^{(p-1) / 2} j(p-j) \equiv \prod_{j=1}^{(p-1) / 2}\left(-j^{2}\right) \\
& \equiv(-1)^{(p-1) / 2}\left(\prod_{j=1}^{(p-1) / 2} j\right)^{2}(\bmod p)
\end{aligned}
$$

and apply Theorem 2.4.
13. Prove that if $n \geq 2$, then $2^{n}-1$ is not divisible by n.

Hint: Let p be the smallest prime that divides n. Consider the congruence $2^{n} \equiv 1 \quad(\bmod p)$.
14. Prove that if p and q are distinct primes, then

$$
p^{q-1}+q^{p-1} \equiv 1 \quad(\bmod p q)
$$

15. Prove that if m and n are relatively prime positive integers, then

$$
m^{\varphi(n)}+n^{\varphi(m)} \equiv 1 \quad(\bmod m n)
$$

16. Let p be an odd prime. By Euler's theorem, if $(a, p)=1$, then

$$
f_{p}(a)=\frac{a^{p-1}-1}{p} \in \mathbf{Z} .
$$

Prove that if $(a b, p)=1$, then

$$
f_{p}(a b) \equiv f_{p}(a)+f_{p}(b) \quad(\bmod p)
$$

17. Let $f(x)$ and $g(x)$ be polynomials with integer coefficients. We say that $f(x)$ is equivalent to $g(x)$ modulo p if

$$
f(a) \equiv g(a) \quad(\bmod p) \quad \text { for all integers } a
$$

Prove that the polynomials $x^{9}+5 x^{7}+3$ and $x^{3}-2 x+24$ are equivalent modulo 7. Prove that every polynomial is equivalent modulo p to a polynomial of degree at most $p-1$.

Hint: Use Fermat's theorem.

