Introduction to number theory-10

May 29, 2017

Power Residues

Let m, k, and a be integers such that $m \geq 2, k \geq 2$, and $(a, m)=1$. We say that a is a k th power residue modulo m if there exists an integer x such that

$$
x^{k} \equiv a \quad(\bmod m)
$$

If this congruence has no solution, then a is called a k th power nonresidue modulo m.

Let $k=2$ and $(a, m)=1$. If the congruence $x^{2} \equiv a(\bmod m)$ is solvable, then a is called a quadratic residue modulo m. Otherwise, a is called a quadratic nonresidue modulo m. For example, the quadratic residues modulo 7 are 1,2 , and 4 ; the quadratic nonresidues are 3,5 , and 6 . The only quadratic residue modulo 8 is 1 , and the quadratic nonresidues modulo 8 are $3,5,4$ and 7 .

Let $k=3$ and $(a, m)=1$. If the congruence $x^{3} \equiv a(\bmod m)$ is solvable, then a is called a cubic residue modulo m. Otherwise, a is called a cubic nonresidue modulo m. For example, the cubic residues modulo 7 are 1 and 6 ; the cubic nonresidues are $2,3,4$, and 5 . The cubic residues modulo 5 are $1,2,3$, and 4 ; there are no cubic nonresidues modulo 5 .

Theorem 3.11 Let p be prime, $k \geq 2$, and $d=(k, p-1)$. Let a be an integer not divisible by p. Let g be a primitive root modulo p, Then a is a k th power residue modulo p if and only if

$$
\operatorname{ind}_{g}(a) \equiv 0 \quad(\bmod d)
$$

if and only if

$$
a^{(p-1) / d} \equiv 1 \quad(\bmod p)
$$

If a is a k th power residue modulo p, then the congruence

$$
\begin{equation*}
x^{k} \equiv a \quad(\bmod p) \tag{3.7}
\end{equation*}
$$

has exactly d solutions that are pairwise incongruent modulo p. Moreover, there are exactly $(p-1) / d$ pairwise incongruent k th power residues modulo p.

Proof. Let $\ell=\operatorname{ind}_{g}(a)$, where g is a primitive root modulo p. Congruence (3.7) is solvable if and only if there exists an integer y such that

$$
g^{y} \equiv x \quad(\bmod p)
$$

and

$$
g^{k y} \equiv x^{k} \equiv a \equiv g^{\ell} \quad(\bmod p)
$$

This is equivalent to

$$
\begin{equation*}
k y \equiv \ell \quad(\bmod p-1) \tag{3.8}
\end{equation*}
$$

This linear congruence in y has a solution if and only if

$$
\operatorname{ind}_{g}(a)=\ell \equiv 0 \quad(\bmod d)
$$

where $d=(k, p-1)$. Thus, the k th power residues modulo p are precisely the integers in the $(p-1) / d$ congruence classes $g^{i d}+p \mathbf{Z}$ for $i=0,1, \ldots,(p-$ 1)/d-1. Moreover,

$$
a^{(p-1) / d} \equiv g^{(p-1) \ell / d} \equiv 1 \quad(\bmod p)
$$

if and only if

$$
\frac{(p-1) \ell}{d} \equiv 0 \quad(\bmod p-1)
$$

if and only if

$$
\operatorname{ind}_{g}(a)=\ell \equiv 0 \quad(\bmod d)
$$

Finally, if the linear congruence (3.8) is solvable, then by Theorem 2.2 it has exactly d solutions y that are pairwise incongruent modulo $p-1$, and so (3.7) has exactly d solutions $x=g^{y}$ that are pairwise incongruent modulo p. This completes the proof.

For example, let $p=19$ and $k=3$. Then $d=(k, p-1)=(3,18)=3$. We can check that 2 is a primitive root modulo 19 , and so a is a cubic residue modulo 19 if and only if 3 divides $\operatorname{ind}_{2}(a)$. Since $-1 \equiv 2^{9}(\bmod 3)$ and $\operatorname{ind}_{2}(-1)=9$, it follows that -1 is a cubic residue modulo 19. The solutions of the congruence $x^{3} \equiv-1 \quad(\bmod 19)$ are of the form $x \equiv 2^{y} \quad(\bmod 19)$, where $0 \leq y \leq 17$ and $3 y \equiv 9(\bmod 18)$. Then $y \equiv 3(\bmod 6)$, and so $y=3,9$, and 15 . These give the following three cube roots of -1 modulo 19:

$$
\begin{aligned}
& 8 \equiv 2^{3} \quad(\bmod 19) \\
& 18 \equiv 2^{9} \quad(\bmod 19)
\end{aligned}
$$

and

$$
12 \equiv 2^{15} \quad(\bmod 19)
$$

Corollary 3.1 Let p be an odd prime, and let $k \geq 2$ be an integer such that $(k, p-1)=1$. If $(a, p)=1$, then a is a kth power residue modulo p, and the congruence $x^{k} \equiv a(\bmod p)$ has a unique solution modulo p.

thank you

