April 3, 2017

«Or «Fr «=»

<

it
v

Ha



Let ag,aq,..., ay be real numbers with a; > 0 for i = 1,..., N.

We define the finite simple continued fraction

1 1 1
a1+ as+ an’

The numbers ao, ai,...,an are called the partial quotients of the continued
fraction.
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We can write a finite simple continued fraction as a rational function in
the variables an.a1..... an. For example.

apar + 1 aopa1as + ag + a
{ap) = ap, (ag,a1) = ———.  {ag,ay,as) = 001G2 0 2
aj aias + 1

and
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We can use the Euclidean algorithm to write a rational number as a finite
simple continued fraction with integral partial quotients. For example, to

represent 574/274, we have

514, 0 L by L
= = Fenrol T
252 252 3+ &2 3+
1 .
= 24 ——7— = (2,3,1,1,2).
3+T_1—
1+

2

p

\

574
252
70
42
28

252 -2 + 70,
70 -3 4 42,
42 -1 4 28,
281+ 14,
14-2.

Notice that the partial quotients in the Euclidean algorithm are the partial

quotients in the continued fraction.
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Theorem 1.6 Let a and b be integers with b > 1. If the Euclidean algo-
rithm for a and b has length n with sequence of partial quotients qo, q1,- - -, @n—1.
then

a
7= (90, q1,- - qn-1).
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Proof. Let 7o = a and r; = b. The proof is by induction on n. If n =1,

a &
then ro =ri1qo and —=2= do = <(1‘0>-
b 1
If n =2, then ro = Tiqo+ 719, and
r. = Toq,
a To T 1 1
—:—:(]u-l——:qU+7:(JU+—:<(IOe(11>-
b 1 ™ q1

Let n > 2, and assume that the theorem is true for integers a and b > 1
whose Euclidean algorithm has length n. Let a and b > 1 be integers
whose Euclidean algorithm has length n 4+ 1 and whose sequence of partial
quotients is {(qo,q1,- - -, Gn)-
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Let ro = Tiqo+ 712
Ty = T2qi +7T3
Tn—1 = TnQn-1 + Tn+1
m = Th+1Qn-

be the n + 1 equations in the Euclidean algorithm for ¢ = ro and b = ry.
The Euclidean algorithm for the positive integers r1 and r2 has length n
with sequence of partial quotients ¢1, ..., q,. It follows from the induction
hypothesis that

r
_l = <(11‘» L ‘»(]71,>
T2
a 1o 1
and so - == — =g+ — (Gor 1.+ ).
b ST et gy T )

This completes the proof.
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It is also true that the representation of a rational number as a finite
simple continued fraction is essentially unique.
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The Fundamental Theorem of Arithmetic

A prime number is an integer p greater than 1 whose only positive divisors
are 1 and p. A positive integer greater than 1 that is not prime is called
composite. If n is composite, then it has a divisor d such that 1 < d < n,
and so n = dd’, where also 1 < d’ < n. The primes less than 100 are the

following:
2
13
31
53
73

If d is a positive divisor of n, then d’ = n/d is called the conjugate divisor

3
17
37
59

79

5

19
41
61
83

7
23
43
67
89

tod. If n =dd" and d < d’, then d < \/n.

11
29
47
71
97.
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We shall prove that every positive integer can be written as the product
of prime numbers (with the convention that the empty product is equal to
1), and that this representation is unique except for the order in which the

prime factors are written. This result is called the fundamental theorem of
arithmetic.
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Theorem 1.7 (Euclid’s lemma) Let a,b,c be integers. If a divides bc
and (a,b) = 1, then a divides c.

Proof. Since a divides be, we have bc = aq for some integer q. Since a
and b are relatively prime, Theorem 1.5 implies that there exist integers x
and y such that

1 =ax+by.

Multiplying by ¢, we obtain
¢ = acx + bey = acx + aqy = a(cx + qy),

and so a divides c. This completes the proof.
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Theorem 1.8 Let k > 2, and let a,by,ba, ..., by be integers. If (a,b;) =1
foralli=1,..., k, then (a,bibe---bg) = 1.

Proof. The proof is by induction on k. Let k = 2 and d = (a, bibs). We
must show that d = 1. Since d divides a and (a,b1) = 1, it follows that
(d,by) = 1. Since d divides b1by, Euclid’s lemma implies that d divides bs.
Therefore, d is a common divisor of @ and by, but (a,bs) =1 and so d = 1.

Let £ > 3, and assume that the result holds for £ — 1. Let a, by, ...,

be integers such that (a,b;) = 1 fori = 1,.... k. The induction assumption

implies that (a,by---by—1) = 1. Since we also have (a,b;) = 1, it follows
from the case k = 2 that (a,by ---by_1br) = 1. This completes the proof.
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Theorem 1.9 If a prime number p divides a product of integers, then p

divides one of the factors.

Proof. Let by, bo, ..., b; be integers such that p divides by - - - by. By The-
orem 1.8, we have (p,b;) > 1 for some 4. Since p is prime, it follows that p
divides b;. O
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Theorem 1.10 (Fundamental theorem of arithmetic) Every positive
integer can be written uniquely (up to order) as the product of prime num-
bers.
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Proof. First we prove that every positive integer can be written as a
product of primes. Since an empty product is equal to 1, we can write 1
as the empty product of primes. Let n > 2. Suppose that every positive
integer less than n is a product of primes. If n is prime, we are done. If
n is composite, then n = dd’, where 1 < d < d’ < n. By the induction
hypothesis, d and d’ are both products of primes, and so n = dd’ is a
product of primes.
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Next we use induction to prove that this representation is unique. The
representation of 1 as the product of the empty set of primes is unique.
Let n > 2 and assume that the statement is true for all positive inte-
gers less than n. We must show that if n = py---py = p}---p}. where

Pl s DisDis -, Py are pllmes then £ = ¢ and thele is a permutation o
of 1,...,k such that p; = pa( for i = 1,...,k. By Theorem 1.9, since py,
divides pf - - - p}, there exists an integer jo € {1...., ¢} such that p, divides

/ . -
Pjj,» and so py = pj0 since pjU is prime. Therefore,

=1 pA_l—Hp,<n

7#70

PA
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It follows from the induction hypothesis that k — 1 = ¢ — 1, and there is
a one-to-one map o from {1,...,k — 1} into {1,...,k} \ {jo} such that

Di = p;m fori=1,..., k —1. Let o(k) = jo. This defines the permutation
o, and the proof is complete.
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p-adic value

For any nonzero integer n and prime number p, we define v,(n) as the
greatest integer r such that p” divides n. Then v,(n) is a nonnegative
integer, and v,(n) > 1 if and only if p divides n. If v,(n) = r, then we say
that the prime power p” ezactly divides n, and write p”||n. The standard
factorization of n is

n= Hp"’f’<”>.

pln

Since every positive integer is divisible by only a finite number of primes,

we can also write
n= H])”'P<">.
]7

where the product is an infinite product over the set of all prime numbers,
and v,(n) = 0 and pu»(") = 1 for all but finitely many primes p.
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p-adic value

The function v,(n) is called the p-adic value of n.

It is completely additive in the sense t‘hattvp(mn) = v,(m) + v,(n)
for all positive integers m and n For example,
sincen! =1-2-3---n, we have
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|
common multiple

Let ay,...,a; be nonzero integers. An integer m’ is called a common
multiple of ay, ..., ay if it is a multiple of a; for all i = 1,..., k, that is,

every integer a; divides m’. The least common multiple of aq, ..., ap is a

positive integer m such that m is a common multiple of aq, ..., ag, and m

divides every common multiple of ay, ..., ax. For example, 910 is a common
multiple of 35 and 91, and 455 is the least common multiple. We shall show
that there is a unique least common multiple for every finite set of nonzero

integers. We denote by [ay,.. ., ay] the least common multiple of ay, . .., ax.
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Theorem 1.11 Let aq,...,ax be positive integers. Then
(al-~~~g(lk:) — Hpmin{rp(al) AAAAA vp(ag)}
P
and

Proof. This follows immediately from the fundamental theorem of arith-
metic. O
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Let x be a real number. Recall that the integer part of x is the greatest
integer not exceeding x, that is, the unique integer n such that n < x <

n+1. We denote the integer part of 2 by [2]. For example, [3] = 1, [V/7] = 2,
and [—g] = —2. The fractional part of x is the real number

{r} =z —[2] €[0,1).
Thus, { } = r and { 3 We can use the greatest integer function

to compute the standard factonzatlon of factorials.
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Theorem 1.12 For every positive integer n and prime p,
log n
[ log p }

o)=Y L’)—’} .

r=1
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Proof. Let 1 < m < n. If p” divides m, then p” < m < n and r <
log n/logp. Since r is an integer, we have r < [logn/logp] and

logn
Togp

(m) Z 1.

r=1
pT|m
T'he number of positive integers not exceeding n that are divisible by p" is
exactly [n/p"], and so

n [1225]
vp(n!) = Zz'p m) Z Z]
m=1 m=1 r=1
pT|m
(%5 sl
DD TS S
r=1 m=1 r=1 p

pm

This completes the proof.
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We shall use Theorem 1.12 to compute the standard factorization of 10!.
The primes not exceeding 10 are 2, 3,5, and 7, and

1(10!) = [Q} + {9} + P} =54+2+41=58,

2 4 8
107 [10
)3(10!) = | — —| =4,
v3(10!) {3 + 9 }
_10_
L O d
107
’U?(lO!) = _7_ =1.

Therefore,
10! = 283%527.
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For every nonzero integer m, the radical of m, denoted by rad(m), is the
product of the distinct primes that divide m, that is,

rad(m) = Hp = H p.

plm vp(m)>1

For example, rad(15) = rad(—45) = rad(225) = 15 and rad(p”) = p for p
prime and r > 1.
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Theorem 1.13 Let m and a be nonzero integers. There exists a positive
integer k such that m divides a* if and only if rad(m) divides rad(a).

Proof. We know that m divides a* if and only if v,(m) < v,(a") =
kv,(a) for every prime p. If there exists an integer & such
that m divides a*, then v,(a) > 0 whenever v,(m) > 0, and so every prime
that divides m also divides a. This implies that rad(m) divides rad(a).

Conversely, if rad(m) divides rad(a), then v,(a) > 0 for every prime p
such that v,(m) > 0. Since only finitely many primes divide m, it follows
that there exists a positive integer k such that v,(a*) = kv,(a) > v,(m)
for all primes p, and so m divides a”.
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Euclid’s Theorem and the Sieve of
Eratosthenes

Theorem 1.14 (Euclid’s theorem) There are infinitely many primes.

Proof. Let py,...,p, be any finite set of prime numbers. Consider the
integer
N:plp”_l_l

Since N > 1, it follows from the fundamental theorem of arithmetic that N
is divisible by some prime p. If p = p; for some i =1,..., n, then p divides
N —py---py, = 1, which is absurd. Therefore, p # p; for all i = 1,...,n.
This means that, for any finite set of primes, there always exists a prime
that does not belong to the set, and so the number of primes is infinite.
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Let 7m(x) denote the number of primes not exceeding x. Then w(x) = 0
for v <2, w(x) =1for 2 <2 <3, w(x) =2 for 3 <a <5, and so on.
Euclid’s theorem s
is,

ys that there are infinitely many prime numbers, that

lim 7(x) = oo,

P
but it does not tell us how to determine them. We can compute all the
plune numbers up to x by using a beautiful and efficient method called the
sieve of Eratosthenes. The sieve is based on a simple observation. If the
positive integer n is composite, then n can be written in the form n = dd’,
where 1 <d < d' <n.If d> \/n, then

n=dd >/nyn=n,
which is absurd. Therefore, if n is composite, then n has a divisor d such
that 1 < d < \/n. In particular, every composite number n < z is divisible
by a prime p < /.

To find all the primes up to x. we write down the integers between 1
and x, and eliminate numbers from the list according to the following rule:
Cross out 1. The first number in the list that is not eliminated is 2; cross
out all multiples of 2 that are greater than 2. The iterative procedure is as
follows: Let d be the smallest number on the list whose multiples have not
already been climinated. If d < /z, then out all multiples of d that
are greater than d. If d > /x, stop. This algorithm must terminate after
at most \/x steps. The prime numbers up to x are the numbers that have
not heen ¢ d out.
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We shall demonstrate this method to find the prime numbers up to 60.
‘We must sieve out by the prime numbers less than /60, that is, by 2,3,5,
and 7. We cross out 1 and all multiples of 2 beginning with 4:

A 2 3 A 5 6 7T B pH 0
1 A2 13 A4 A5 A6 17 A8 19 20
21 22 23 24 25 26 27 28 29 j30
31 32 B3 B4 35 B6 37 38 B9 A0
41 A2 43 A4 A5 A6 4T A8 49 0
AL p2 53 p4 55 p6 0 BT B8 59 B0
Next we cross out all multiples of 5 beginning with 10:

A 2 3 A 5 p T B p J0
11 A2 13 J4 A5 A6 17 A8 19 20
21 p2 23 24 25 p6 2T 28 29 A0
31 A2 A3 B4 A5 A6 3T B8 A9 A0
41 A2 43 A4 A5 A6 AT A8 49 B0
Bl p2 53 B4 B5 p6 BT PS5O 60

=8

Finally, we cross out all multiples of 7 beginning with 14:

A 2 3 A 5 p T B pH J0
11 A2 13 f4 45 A6 17 A8 19 20
2122 23 24 25 26 27 28 20 A0
31 A2 A3 B4 A5 A6 3T A8 A9 AD
A1 A2 43 A4 AR AG AT A8 A9 RO
Bl B2 53 B4 5 6 BT B8 B9 6D

The numbers that have not been crossed out are:
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59.

These are the prime numbers up to 60.
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THEOREM  If a natural number n is greater than 2, then between n and n!
there is at least one prime number.

PROOF. Since n > 2, the number N = n!—1 is greater than 1, whence, in
virtue of Theorem 2, it has a prime divisor, p. Number p cannot be less
than or equal to n.since, if it could, it would divide 1, which is impossible.
Consequently p > n. On the other hand, p < N, p as a divisor of N. Thus
we conclude that n < p < nl—1 < nl, which completes the proof. [J
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