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Bertrand’'s Postulate

We have seen that the sequence of prime numbers 2,3.5.7, ... is infinite.
To see that the size of its gaps is not bounded, let V :=2-3-5---p denote
the product of all prime numbers that are smaller than & + 2. and note that
none of the & numbers

N+2 N+3.N+4,...,] N+kN+(k+1)

is prime, since for 2 < i < k 4 1 we know that ¢ has a prime factor that is
smaller than & -+ 2, and this factor also divides [NV, and hence also IV + 7.
With this recipe, we find, for example, for & = 10 that none of the ten
numbers

2312,2313,2314, ...,2321

is prime.
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But there are also upper bounds for the gaps in the sequence of prime num-
bers. A famous bound states that “the gap to the next prime cannot be larger
than the number we start our search at.” This is known as Bertrand’s pos-
tulate, since it was conjectured and verified empirically for n < 3000 000
by Joseph Bertrand. It was first proved for all n by Pafnuty Chebyshev in
1850. A much simpler proof was given by the Indian genius Ramanujan.
Our Book Proof is by Paul Erdés: it is taken from Erdds’ first published
paper, which appeared in 1932, when Erdos was 19.

Bertrand’s postulate.
For everyn > 1, there is some prime number p with n < p < 2n.
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Proof. We will estimate the size of the binomial coefficient (277) care-

fully enough to see that if it didn’t have any prime factors in the range
n < p < 2n, then it would be “too small.” Our argument is in five steps.

(1) We first prove Bertrand’s postulate for . < 4000. For this one does not
need to check 4000 cases: it suffices (this is “Landau’s trick™) to check that

2,3,5,7,13,23,43,83,163, 317,631, 1259, 2503, 4001

is a sequence of prime numbers, where each is smaller than twice the previ-
ous one. Hence every interval {y : n < y < 2n}, with n < 4000, contains
one of these 14 primes.
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(2) Next we prove that

H p < 4571 for all real > 2, (1)

psz

where our notation — here and in the following — is meant to imply that
the product is taken over all prime numbers p < z. The proof that we
present for this fact uses induction on the number of these primes. It is
not from Erd6s’ original paper, but it is also due to Erd6s (see the margin),
and it is a true Book Proof. First we note that if ¢ is the largest prime with

q < «x, then
Hp = Hp and 4971 < gm L
psm P<q

Thus it suffices to check (1) for the case where = = ¢ is a prime number.
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Forq = 2 we get *2 < 4,"we proceed to consider odd primes ¢ = 2m + 1.
(Here we may assume, by induction, that (1) is valid for all integers x in

the set {2,3, ..., 2m}.) For g = 2m + 1 we split the product and compute
2m+1 .
H p = H P H p < _lm( ) < qmo2m . y2m
p<2m+1 p<m+1 m4+1<p<2m+1 m

All the pieces of this “one-line computation™ are easy to see. In fact,

H p < qm

p<m+1
holds by induction.

April 3, 2017

6/ 22



The inequality

(?m + 1>
p =
m

follows from the observation that (2”7?1) = %

the primes that we consider all are factors of the numerator (2m + 1)!, but
not of the denominator m!(m + 1)!. Finally

2m+1 < 92m
m -
(Qm + l) (Qm + l)
and
m m+1

are two (equal!) summands that appear in

m+1<p<2m+1

is an integer, where

holds since
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Legendre’s theorem
The number n! contains the prime
factor p exactly
n
; [ 17’“J
times.

M Proof. Exactly L%J of the factors
of n! =1-2-3--.nare divisible by
p, which accounts for V—p’J p-factors.
Next, [fgj of the factors of n! are
even divisible by p2, which accounts
for the next L;}J prime factors p

of nl, etc. O

(3) From Legendre’s theorem (see the box) we get that (

271) _ (2n)!
n/) = nln!

contains the prime factor p exactly

> ([ 2[5

times. Here each summand is at most 1, since it satisfies

2n n 2n n
— | =2 | < —-2=-1
]2l < G

and it is an integer. Furthermore the summands vanish whenever p* > 2n.

Thus (*") contains p exactly

n
9
Z <{—:J -2 {%J) < max{
k=1 L P

times. Hence the largest power of p that divides (

“ip” < 2n}

2n
n

In particular, primes p > v/2n appear at most once in (Zn”)
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Furthermore — and this, according to Erd6s, is the key fact for his proof
— primes p that satisfy %n < p < n do not divide (27?) at all! Indeed,
3p > 2n implies (for n > 3, and hence p > 3) that p and 2p are the only

2n)! .
2! \while we get
nin!” =)

multiples of p that appear as factors in the numerator of
two p-factors in the denominator.

Examples such as
(5y=2%.5%.7.17.19.23

() =2%.3%.52.17.19.23
(3)=2%.32.5.17.19.23.29
illustrate that “very small” prime factors
p < /21 can appear as higher powers
in (27:‘) “small” primes with v/2n <

p < 5mn appear at most once, while

factors in the gap with %n <p<mn

don’t appear at all.
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(4) Now we are ready to estimate (?) For n > 3, using an estimate from
page 12 for the lower bound, we get

£<<2n)§ I II » - II »

2n — \ m
p<v2n \/2n<p§%n n<p<2n
and thus, since there are not more than \/2n primes p < v/2n,

4" < (271)1+m- H P H P for n>3. (2)

VZn<p<in n<p2n
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(5) Assume now that there is no prime p with n < p < 2n, so the second
product in (2) is 1. Substituting (1) into (2) we get

4 < (2p)HVER4En
or
430 < (2p)HVER 3)

which is false for 2 large enough! In fact, using @ + 1 < 2 (which holds
for all @ > 2, by induction) we get

on = (Y2n)® < (| ¥2n] +1)° <26L¥on] <oty
and thus for n > 50 (and hence 18 < 2v/2n) we obtain from (3) and (4)
92n (QII)S(H\/%) < 25’/%(18“8\/%) < 920 V2nvan _ 220(2n)2/3.

This implies (2n)/3 < 20, and thus n < 4000. O
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A Linear Diophantine Equation
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1.6 A Linear Diophantine Equation

A diophantine equation is an equation of the form

that we want to solve in rational numbers, integers, or nonnegative integers.
This means that the values of the variables x....,x; will be rationals,
integers, or nonnegative integers. Usually the function f(z,...,z;) is a
polynomial with rational or integer coefficients.

In this section we consider the linear diophantine equation

(11(331+"'—(1k(1’k:b.

We want to know when this equation has a solution in integers, and when
it has a solution in nonnegative integers. For example, the equation

31 +bxa =0

has a solution in integers for every integer b, and a solution in nonnegative
integers for b = 0,3,5 6, and all b > 8 (Exercise 20).
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Theorem 1.15 Let aq.....a, be integers, not all zero. For any integer b,
there ewist inltegers 1, ...,z such that

a1x1+---+akxk:b (14)

if and only if b is a multiple of (aq,..., ay). In particular, the linear equa-
tion (1.4) has a solution for every integer b if and only if the numbers
a, ..., ay are relatively prime.

Proof. Let d = (ay,...,a). If equation (1.4) is solvable in integers x;,
then d divides b since d divides each Integer a;. Conversely, if d divides
b, then b = dq for some integer g. By Theorem 1.4, there exist integers
Ylowwns Yy such that

ary1 + -+ arpyr =d.

Let z; = ysqfori=1,..., k. Then
ayzy + - Fagry = ay(yi1q) + -+ ar(yrg) =dg=>

is a solution of (1.4). It follows that (1.4) is solvable in integers for every b
if and only if (a1,...,a;) = 1. O
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Theorem 1.16 Let aq,...,a; be posilive integers such that
(a1, ..., ay) =1

If

k—1

b= (a — 1)2(11.

i=1

then there exist nonnegative integers xy,...,x) such that
aixy + -+ apxry = b.

e Rl 5 200
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Proof. By Theorem 1.15, there exist integers z,....z; such that
a1z + -+ Rz =b.
Using the division algorithm, we can divide each of the integers zy,....,zx1

by a; so that
Zi = arqi + &

and
O=ri=ar—1

k-1
fori=1,...,k— 1. Let xk=zk—Zaiqi.
i=1
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Then
b = aiz1+- -+ ap—125—1 + arzk
= aylapqr +o1) 4+ +ap_1(apgr_1 + Tp_1) + apzy
k—1
= ar+- -+ ap—1Tr—1 +ax | Zp + E aig;
i=1
= @+ -+ ap—1Tk—1 + axTj
k—1
< (ap —1) E a; + apr,
i=1

where x; is an integer, possibly negative. However, if

k—1

b= (ar—1))  ai,

i=1

then ajxp > 0 and so x; = 0. This completes the proot. O
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Let ay,...,ar be relatively prime positive integers. Since every suffi-
ciently large integer can be written as a nonnegative integral linear combi-
nation of a4, ..., ay., it follows that there exists a smallest integer

such that every integer b > G(ay, ..., a;) can be represented in the form (1.4),

where the variables z, ..., z). are nonnegative integers. The example above
shows that

G(3,5) = 8.

The linear diophantine problem of Frobenius is to determine G(ay, ..., ax)
for all finite sets of relatively prime positive integers aq,...,a;. Thisis a
difficult open problem, but there are some special cases where the solution

is known. The following theorem solves the Frobenius problem in the case
k=2.
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Theorem 1.17 Let ay and ag be relatively prime positive integers. Then

Glay,a9) = (ay — 1)(az — 1).
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Proof. We saw in the proof of Theorem 1.15 that for every integer b
there exist integers z1 and xz» such that

b=ajr1 + asxze and 0<x; <as—1. (1.5)
If we have another representation
b= a2} + asxh, and 0< 2] <ay—1,

then
ai(z1 — o)) = as(zh — 29).
Since as divides ay (21 —z1) and (a1, a3) = 1, Euclid’s lemma
implies that as divides z1 — #}. Then xy = 2/, since |1 — 2}| < az — L. It
follows that x = @}, and so the representation (1.5) is unique.
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If the integer b cannot be represented as a nonnegative integral combina-
tion of a1 and a2, then we must have 1 < —1 in the representation (1.5).
This implies that

b=aix1+ asxs < ay (a.g —1)4+as(-1) = (01 — 1)(((-2 — 1) —1,
and so G(a1,a2) < (a1 — 1)(az — 1). On the other hand, since
al(ag — l) =+ Cig(fl) =ajas —ay; — az < ajas,

it follows that if
a1ds — a1 — A9 = A1 + asTs

for any nonnegative integers r; and s, then 0 < z; < as — 1. By the
uniqueness of the representation (1.5), we must have z; = as — 1 and
r9 = —1. Therefore, the integer a;ay, — a; — ap cannot be represented as a
nonnegative integral linear combination of a; and a2, and so G(ay,a2) =

(Gl — 1)({12 — 1) [m]
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Introduction to number theory, informations

Introduction to number theory

Lecturers (30 hours): Maciej Zakarczemny
Exercises (problem sessions 15 hours): Maciej Zakarczemny
Assessment method: two tests during the semester, final exam

The first exam is scheduled for Monday, 26 June 2017, 11.00 — 12:00.
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Introduction to number theory, informations

Lectures and a lists of exercises (exercises sheets) will be available online.

My website: maciej.zakarczemny.pl

tab: Introduction to number theory
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Introduction to number theory, informations

Topics covered:

Notation and Conventions
Divisibility, GCD, factorization
Fundamental Theorem of Arithmetic
Congruences

Fermat’s Little Theorem

Euler’s Phi function.

Prime numbers; counting primes, Mersenne and other types of primes

Carmichael numbers

Modular arithmetic and algebra, Chinese Remainder Theorem.
Diophantine equations.

Pythagorean Triples and the Fermat’s Last Theorem

“Unbreakable” codes and other applications.
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Introduction to number theory, informations

Books:
J. Silverman, A friendly introduction to Number Theory, Prentice Hall, 1997.
Shoup, V. A Computational Introduction to Number Theory and Algebra.

Available at: http://shoup.net/ntb/ntb-v2.pdf

K. Ireland, M. Rosen, A classical introduction in modern number theory, Springer 1990.
W.Narkiewicz, Number Theory, World Scientific, Singapore, 1983.

W.Sierpinski, Elementary theory of numbers, Warszawa-Amsterdam-New York-Oxford 1987.
Z.l. Borevich. |.R.Shafarevich, Number Theory, Academic Press 1966

H. Davenport, The Higher Arithmetic, Cambridge University Press.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,
Oxford University Press, 1979.
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Introduction to number theory, informations

Requirements to pass the lectures and exercises.

General notes regarding the course:

To pass the course, you need to pass the final exam in the end,
and you need to pass the exercises.

Students must score at least 60 percent on the exam to pass.
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Introduction to number theory, informations

Requirements to pass the lectures and exercises.

General notes regarding the course:

To pass the exercises you need to pass:
homework exercises (which will be put on the webpage in due course)
and two tests.

Minimum passing is 60 percent.
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Introduction to number theory, informations

The maximum number of lessons that a student may

be absent without acceptable documentation justifying the absence is 2.
Class attendance is required of all undergraduates unless the student has
an official excused absence.

Excused absences are granted for one general reason:

Student has a documented personal reason (illness, injury, health condition etc.).
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Introduction to number theory, informations

Consultation hours: Monday 13.30 - 14.30

Room 304/14, located on the third floor, building WIEiK

e-mail: mzakarczemny@pk.edu.pl
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