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Theorem 2.2 Let m,a,b be integers with m > 1. Let d = (a,m) be the
greatest common divisor of a and m. The congruence

ar =b (mod m) (2.1)
has a solution if and only if
b=0 (mod d).

Ifb=0 (mod d), then the congruence (2.1) has ezactly d solutions in in-
tegers that are pairwise incongruent modulo m. In particular, if (a,m) =1,
then for every integer b the congruence (2.1) has a unique solution modulo
m.
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Proof. Let d = (a,m). Congruence (2.1) has a solution if and only if
there exist integers x and y such that

ax — b= my,

or, equivalently,
b=azxr — my.
By this is possible if and only if b =0 (mod 4d).
If  and z; are solutions of (2.1), then

alry —z)=ar1 —ar=b—b=0 (mod m),

and so
a(zi —x) =mz
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for some integer z. If d is the greatest common divisor of a and m, then

(a/d,m/d) =1 and
(3)e-==(F)=

By Euclid’s lemma (Theorem 1.7), m/d divides x; — =, and so

im
=T+ —

d

for some integer i, that is,
m
z1 =2 (mod g)

Moreover, every integer x7 of this form is a solution of (2.1). An integer
congruent to x modulo m/d is congruent to x + im/d modulo m for some
integer ¢ = 0,1,...d—1, and the d integers x+im/d withi =0,1,...,d—1
are pairwise incongruent modulo m. Thus, the congruence (2.1) has exactly
d pairwise incongruent solutions. This completes the proof. O
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Theorem 2.3 If p is a prime, then Z/pZ is a field.

Proof. If a + pZ € Z/pZ and a + pZ # pZ, then a is an integer not
divisible by p. By Theorem 2.2, there exists an integer x such that axz =1
(mod p). This implies that

(a+pZ)(z+pZ) =1+ pZ,

and so a + pZ is invertible. Thus, every nonzero congruence class in Z/pZ
is a unit and Z/pZ is a field. O
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Here are some examples of linear congruences. The congruence
7z =3 (mod b)

has a unique solution modulo 5 since (7,5) = 1. The solution is z = 4
(mod 5). The congruence

35r =14 (mod 91) (2.2)
is solvable since (35,91) = 7 and
—14=0 (mod 7).
Congruence (2.2) is equivalent to the congruence

5z =-2 (mod 13), (2.3)

which has the unique solution z = 10 (mod 13). Every solution of (2.2)
satisfies

z=10 (mod 13)

and so a complete set of solutions that are pairwise incongruent modulo 91

is {10,23,36,49, 62,75, 88}.
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Lemma 2.1 Let p be a prime number. Then x2 = (mod p) if and only
ifx =+1 (mod p).

Proof.Ifz = +1 (mod p), then 22 =1 (mod p). Conversely, if 22 = 1
(mod p), then p divides 22 — 1 = (2 — 1)(x + 1), and so p must divide = — 1
orzx+1.0
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Theorem 2.4 (Wilson) If p is prime, then

(p—1!=-1 (mod p).

Proof. This is true for p = 2 and p = 3, since 1! = —1 (mod 2)
and 2! = —1 (mod 3). Let p > 5. By Theorem 2.2, to each integer a €
{1,2,..., p — 1} there is a unique integer a=' € {1,2,..., p — 1} such that

aa~' =1 (mod p). By Lemma 2.1, a = ¢! if and only if a = 1 or @ =
p—1. Therefore, we can partition the p—3 numbers in theset {2, 3, ..., p—2}
into (p — 3)/2 pairs of integers {a;, a:l} such that a,a:l =1 (mod p) for

i=1,..., (p —3)/2. Then
-1 1-2:3---(p=2)p-1
(p—3)/2
-1 J[ @
i=1
p—1
—1 (mod p).

This completes the proof. O

Prove that if m is composite and m # 4, then (m—1)! =0 (mod m).
This is the converse of Wilson’s theorem.
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Theorem 2.5 Let m and d be positive integers such that d divides m. If a
is an integer relatively prime to d, then there exists an integer a’ such that
a' =a (mod d) and a' is relatively prime to m.

Proof. Let m = HJ;:l pi*and d = Hf:l pit, wherer; > land 0 < s; < r;
fori=1,..., k. Let m' be the product of the prime powers that divide m

but not d. Then
k
! Ti
m' = H Pl

;=0

and
(m',d) = 1.

By Theorem 2.2, there exists an integer x such that

dr=1-—a (modm').

Then
a=atdr=1 (modm)
and so
(a',m") =1.
Also,

a' =a (modd).

If (a’,m) # 1, there exists a prime p that divides both a’ and m. However,
p does not divide m’ since (a’,m’) = 1. It follows that p divides d, and
so p divides @’ — dz = a, which is impossible since (a,d) = 1. Therefore,
(a'.m)=1.0
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Ifa=b (mod m), then a = b+ ma for some integer r. An integer d is
a common divisor of a and m if and only if d is a common divisor of b and
m, and so (a,m) = (b,m). In particular, if a is relatively prime to m, then
every integer in the congruence class of a + mZ is relatively prime to m.
A congruence class modulo m is called relatively prime to m if some (and,
consequently, every) integer in the class is relatively prime to m.

We denote by ¢(m) the number of congruence classes in Z/mZ that are
relatively prime to m. The function ¢(m) is called the Euler phi function.
Equivalently, w(m) is the number of integers in the set 0,1,2,..., m — 1

that are relatively prime to m. The Euler phi function is also called the
totient function.
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A set of integers {ry,..., rg(m)} is called a reduced set of residues modulo
m if every integer = such that (xz,m) = 1 is congruent modulo m to some
integer ;. For example, the sets {1,2,3,4,5,6} and {2,4,6,8, 10,12} are
reduced sets of residues modulo 7. The sets {1,3,5,7} and {3,9, 15,21} are
reduced sets of residues modulo 8.
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We denote the group of units in Z/mZ by
(Z/mZ)" .
ER={r,..., r\;(m,} is a reduced set of residues modulo m, then
(Z/mZ)" = {r+mZ:rc R}

and

‘(Z/mZ)X‘ = @(m).

For example,

(Z/6Z)" = {1 +6Z,5+ GZ}

and

(Z/TZ) = {1+ 72,2+ TZ,3+TL,A+TL,5+7Z.6 +TZ}.
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If @ + mZ is a unit in Z/mZ, then (a,m) = 1 and we can apply the
Euclidean algorithm to compute (a+mZ) ™" If we can find integers 2 and
y such that

ar +my =1,
then
(a +mZ)(z+mZ)=1+mZ,
and = 4+ mZ = (a + mZ)~L.

For example, to find the inverse of 13 + 17Z, we use the Euclidean algo-

rithm to obtain

17 13-1+4,
13 = 4-341,
4 = 1-4.

This gives
1=13-4-3=13-(17T-13-1)3=13-4-17- 3,

and so
13-4=1 (mod 17).
Therefore,
(134+17Z) ' =4+ 177Z.
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2.3  The Euler Phi Function

An arithmetic function is a function defined on the positive integers. The
Euler phi function ¢ (m) is the arithmetic function that counts the number
of integers in the set 0,1,2,...,m — 1 that are relatively prime to m. We

have
o) = 1, 4 =2
e(2) = 2 (i) = 6
e3) = 3 e(B) = 4
p(d) = 2 e9) = 6
w(5) = 4, e(l0) = 1
If p is a prime number, then (a,p) =1 fora=1,..., p—1,and ¢(p) = p—1.

If p" is a prime power and 0 < a < p” — 1, then (a,p”) > 1 if and only if a
is a multiple of p. The integral multiples of p in the interval [0, p" — 1] are
the p™~! numbers 0,p, 2p,3p, ..., (p"~' — 1)p, and so

. . _ ) 1
e(p)=p —pl=p (1 — —)-
p
In this section we shall obtain some important properties of the Euler phi
function.
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Theorem 2.6 Let m and n be relatively prime positive integers. For every
integer ¢ there exist unigue integers a and b such that

0<a<n-—1,
0<b<m-—1,
and
c=ma-+nb (mod mn). (2.4)

Moreover, (c,mn) =1 if and only if (a,n) = (b,m) = 1 in the representa-
tion (2.4).
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Proof. If a,, as, by, by are integers such that
may + nb; = mas +nby  (mod mn),

then
ma; = maj +nb; = mas + nby = may (mod n).

Since (m,n) = 1, it follows that
a; =as (mod n),

and so a; = ay. Similarly, b; = by. It follows that the mn Integers ma + nb
are pairwise incongruent modulo mn. Since there are exactly mn distinct
congruence classes modulo mn, the congruence (2.4) has a unique solution
for every integer c.

Let ¢ =ma+nb (mod mn). Since (m,n) = 1, we have

(e, m) = (ma+nb,m) = (nb,m) = (b,m)

and
(e,n) = (ma+nb,n) = (ma,n) = (a,n).

It follows that (¢,mn) = 1 if and only if (¢,m) = (¢,n) = 1 if and only if
(b,m) = (a,n) = 1. This completes the proof. O
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For example, we can represent the congruence classes modulo 6 as linear
tollows:

combinations of 2 and 3 as

o= o
|

W=
I

o
[I

N O - N O

240
241
240
241
240
241

Lo oW W wow

mod 6),

mod 6),

mod 6),
mod 6),

mod 6).

( )
( )
(mod 6),
( )
( )
( )
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A maltiplicative function is an arithmetic function f(m) such that f(mn) =
f(m)f(n) for all pairs of relatively prime positive integers m and n. If
f(m) is multiplicative, then it is easy to prove by induction on k that if
mi, ..., my are pairwise relatively prime positive integers, then f(mq ---my) =

flmy)--- f(mg).
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Theorem 2.7 The Euler phi function is multiplicative. Moreover,

p(m) = mH (l - 1%) .

plm
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Proof. Let (m,n) = 1. There are (mn) congruence classes in the ring
Z /mn'Z that are relatively prime to mn. By Theorem 2.6, every congruence
class modulo mn can be written uniquely in the form ma + nb + mnZ,
where a and b are integers such that 0 < a <n—1and 0 < b < m — 1.
Moreover, the congruence class ma + nb+mnZ is prime to mn if and only
if (b,m) = (a,n) = 1. Since there are @(n) integers a € [0,n — 1] that are
relatively prime to n, and ¢(m) integers b € [0,m — 1] relatively prime
to m, it follows that @(mn) = @(m)e(n), and so the Euler phi function is

multiplicative. If mq, ..., my are pairwise relatively prime positive integers,
then @(m1---mg) = p(ma)---@(mz). In particular, if m = pi*---p;* is
the standard factorization of m, where p;....,p; are distinct primes and
ri,...,r are positive integers, then
k E 1 1
e(m) =] e @) =]]r (1 - .—) =m]] (1 - —) :
i=1 i=1 i P
= = plm

This completes the proof. O
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For example, 7875 = 32537 and

G(T875) = (3%)@(5%)e(7) = (9 — 3)(125 — 25)(7 — 1) = 3600.
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Theorem 2.8 For every positive integer m.,

Z ol(d) = m.

d|m
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Proof. We first consider the case where m = p' is a power of a prime p.
The divisors of p* are 1, p, p pt, and

t
dowld) =D ) =1+ (p—p")=r".
d|pt r=0 r=1

Next we consider the general case where m has the standard factorization

oy — blt2 by
m=py Py Py,

where py, ..., pr are distinct prime numbers and {1, ..., 1, are positive in-
tegers. Every divisor d of m is of the form

71,72 T

d=p'py’ Py

where 0 < r;, <t fori=1,.... k. By Theorem 2.7, ©(d) is multiplicative,
and so
w(d) = (P )e(ps) - - e(p)-
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Therefore,
t th
Soeld) = Y > e
d|m r1=0 =0
t th
= e(pT )e(s*) - elpy)
=0 =0
koot
= JI> et
i=1r;=0
k
- I
i=1
= m
This completes the proof. O
S ——— Ny i,
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For example,

Y eld) = o)+ e(2)+e(3) + () + 0(6) + (12)

d|12
= 14+1+2+24+244
= 12
and
doeld) = @(1)+0(3) +@(5) + ¢(9) + p(15) + p(45)
d|45

14+424+44+64+8+24
45.
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2.4 Chinese Remainder Theorem

Theorem 2.9 Let m and n be positive integers. For any integers a and b
there exists an inleger x such that

r=a (modm) (2.5)

and

]
Il

=b (mod n) (2.6)

if and only if
a=b (mod (m,n)).

If = is a solution of congruences (2.5) and (2.6), then the integer y is also
a solution if and only if

z=y (mod [m,n]).
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Proof. If x is a solution of congruence (2.5), then & = a 4+ mu for some
integer u. If z is also a solution of congruence (2.6), then

z=a+mu=>b (modn),

that is,
a+ mu=b+nv

for some integer v. It follows that
a—b=nv—mu=0 (mod (m,n)).

Conversely, if a —b =0 (mod (m,n)), then by Theorem 1.15 there exist
integers u and v such that

a —b=mnv—mu.

Then
r=a+mu="b+nv

is a solution of the two congruences.
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An integer y is another solution of the congruences if and only if
y=a=xz (modm)
and
y=b=z (modn),

that is, if and only if 2y i1s a common multiple of m and n, or, equivalently,
x — y is divisible by the least common multiple [, n]. This completes the
proof. O
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For example, the system of congruences

= 5 (mod 21),
19 (mod 56),

has a solution, since
(56,21) =7

and
19=5 (mod 7).

The integer z is a solution if there exists an integer u such that

z=5+2lu=19 (mod 56),

that is,
2lu =14 (mod 56),
3u=2 (mod 8),
or
u=6 (mod 8).
Then

o =5+ 21lu=>5+ 21(6 + 8v) = 131 + 168v

is a solution of the system of congruences for any integer v, and so the set
of all solutions is the congruence class 131 + 1687Z.
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Theorem 2.10 (Chinese remainder theorem) Letk = 2. Ifay,... ax
are inlegers and myq, . .., my, are parrwise relatively prime posilive integers,

then there exists an integer x such that
x=a; (modm;) foralli=1,..., k.

If z is any solution of this set of congruences, then the integer v is also a
solution if and only if

z=y (modm-- mp).
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Proof. We prove the theorem by induction on k. If & = 2, then [my, m2] =
mimes, and this is a special case of Theorem 2.9.

Let k& = 3, and assume that the statement is true for k — 1 congruences.
Then there exists an integer z such that 2 = a; (mod m;) fori=1,..., k—
1. Since mq, ..., my, are palrwise relatively prime integers, we have

(my - my_q,my) =1,

and so, by the case k = 2, there exists an integer x such that

z = z (modmy---mg_1),
z = ar (modmyg).
Then
x=z=a; (modm;)
fori=1,...,k— 1.

If y is another solution of the system of k congruences, then = — y is
divisible by m; for alli = 1,..., k. Since m;,...,m; are pairwise relatively
prime, it follows that = — v is divisible by my - - - m;. This completes the
proof, O
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For example, the system of congruences

r = 2 (mod 3),
z = 3 (mod5)

r = 5 (mod {)
r = 7 (mod 11)

has a solution, since the moduli are pairwise relatively prime. The solution
to the first two congruences is the congruence class

z=8 (mod 15).
The solution to the first three congruences is the congruence class
z =68 (mod 105).
The solution to the four congruences is the congruence class

z =1118 (mod 1155).
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There is an important application of the Chinese remainder theorem to
the problem of solving diophantine equations of the form

flzy,...,2) =0 (mod m),

where f(xq,...,xy) is a polynomial with integer coefficients in one or sev-

eral variables. This equation is solvable modulo m if there exist integers
ai,...,ar such that

flar,...,ax) =0 (mod m).

The Chinese remainder theorem allows us to reduce the question of the
solvability of this congruence modulo m to the special case of prime power
moduli p”. For simplicity, we consider polynomials in only one variable.
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Theorem 2.11 Let
m=pit--ppF

be the standard factorization of the positive integer m. Let f(x) be a poly-
nomial with integral coefficients. The congruence

flz) =0 (mod m)
is solvable if and only if the congruences
flz)=0 (mod p*)

are solvable for alli=1,..., k.
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Proof. If f() =0 (mod m) has a solution in integers, then there exists
an integer a such that m divides f(a). Since p;* divides m, it follows that
pi* divides f(a), and so the congruences f(x) =0 (mod p!*) are solvable

_ iy e cnlir
=0 (mod p*) are solv-
an integer a; such that

fla;) =0 (mod pl*).
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Since the prime powers pi*,.... Pyt are pairwise relatively prime, the Chi-
nese remainder theorem tells us that there exists an integer a such that

a=a; (modp")
for all i. Then
fla) = f(a;) =0 (mod pi*)
for all 7. Since f(a) is divisible by each of the prime powers p!’, it is also

divisible by their product m, and so f(a) =0 (mod m). This completes
the proof. O
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For example, consider the congruence
fr)=2%-34=0 (mod 495).
Since 495 = 32 . 5. 11, it suffices to solve the congruences
fle)=a2?>—34=2>+2=0 (mod 9),
fle)=2?=-34=2"4+1=0 (mod 5),
and

flz)=a?-34=2>-1=0 (mod 11).

These congruences have solutions
Ff(5)=0 (mod9),
f(2) =0 (mod 5),
and

f()=0 (mod 11).

May 1, 2017 37 /53



By the Chinese remainder theorem, there exists an integer a such that

a = 5 (mod?9),
a = 2 (mod?5),
a 1 (mod 11).

Solving these congruences, we obtain
a =122 (mod 495).
We can check that
f(122) = 122% — 34 = 14,850 = 30 - 495,

and so

f(122) =0 (mod 495).
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2.5 Euler’s Theorem and Fermat’s Theorem

Theorem 2.12 (Euler) Let m be a positive integer, and let a be an inte-
ger relatively prime to m. Then

a?™ =1 (mod m).
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Proof. Let {ry,..., 7o(m)} De a reduced set of residues modulo m. Since
(a,m) = 1, we have (ar;,m) =1 fori =1..... @(m). Consequently, for
every i € {1,..., w(m)} there exists o(i) € {1,..., (m)} such that

ar; =gy (mod m).

Moreover, ar; = ar; (mod m) if and only if ¢ = j. and so ¢ is a permuta-
tion of the set {1,..., o(m)} and {arq,. .., ary(m) } is also a reduced set of
residues modulo m. It follows that

a? ™y Toim) = (ari)(ary)---(arym)) (mod m)
= To()Te(2) " Tal(e(m)) (mod m)

= rirecc Ty (mod m).
Dividing by 7172 - - 7(m), we obtain
a?™ =1 (mod m).

This completes the proof. O
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Theorem 2.13 (Fermat) Let p be a prime number. If the integer a is not
divisible by p, then
a’1=1 (mod p).

Moreover,
a’ =a (mod p)

for every integer a.

Proof. If p is prime and does not divide a, then (a,p) =1, ¢(p) = p—1,
and
a? ' =af®) =1 (mod p)

by Euler’s theorem. Multiplying this congruence by a, we obtain
a? =a (mod p).

If p divides a, then this congruence also holds for a. O
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Let m be a positive integer and let a be an integer that is relatively
prime to m. By Buler’s theorem, o™ = 1 (mod m). The order of a
with respect to the modulus m is the smallest positive integer d such that
a’=1 (mod m). Then 1 < d < ¢(m). We denote the order of @ modulo
m by ord,, (a). We shall prove that ord,,(a) divides p(m) for every integer
a relatively prime to p.

Theorem 2.14 Let m be a positive integer and a an integer relatively
prime to m. If d is the order of a modulo m, then a* = o’ (mod m)
if and only if k = ¢ (mod d). In particular, a™ =1 (mod m) if and only
if d divides n, and so d divides o(m).

L
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Proof. Since a has order d modulo m, we have a? = 1 (mod m). If
k={ (mod d), then k = ¢+ dg, and so

a¥ = aftde = ot (ad)q =a’ (mod m).

Conversely, suppose that «* = af (mod m). By the division algorithm,
there exist integers ¢ and r such that

k—{l=dg+r and 0<r<d-1.

Then

k

. q . R
ab = gftder = ot (ad) a" =a"a”  (mod m).

Since (a*,m) = 1, we can divide this congruence by a* and obtain

a" =1 (mod m).
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< d—1, and d is the order of @ modulo m, it follows that r = 0,
=/ (x 110d d).

Ifa" =1 1% (mod m), then d divides n. In particular, d divides
@(m), since a?™ =1 (mod m) by Euler’s theorem. O

Since 0 < r
and so k
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thank you
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Introduction to number theory, informations

Introduction to number theory

Lecturers (30 hours): Maciej Zakarczemny
Exercises (problem sessions 15 hours): Maciej Zakarczemny
Assessment method: two tests during the semester, final exam

The first exam is scheduled for Monday, 26 June 2017, 14.00 — 15:00.
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Introduction to number theory, informations

Lectures and a lists of exercises (exercises sheets) will be available online.

My website: maciej.zakarczemny.pl

tab: Introduction to number theory
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Introduction to number theory, informations

Topics covered:

Notation and Conventions
Divisibility, GCD, factorization
Fundamental Theorem of Arithmetic
Congruences

Fermat’s Little Theorem

Euler’s Phi function.

Prime numbers; counting primes, Mersenne and other types of primes

Carmichael numbers

Modular arithmetic and algebra, Chinese Remainder Theorem.
Diophantine equations.

Pythagorean Triples and the Fermat’s Last Theorem

“Unbreakable” codes and other applications.
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Introduction to number theory, informations

Books:
J. Silverman, A friendly introduction to Number Theory, Prentice Hall, 1997.
Shoup, V. A Computational Introduction to Number Theory and Algebra.

Available at: http://shoup.net/ntb/ntb-v2.pdf

K. Ireland, M. Rosen, A classical introduction in modern number theory, Springer 1990.
W.Narkiewicz, Number Theory, World Scientific, Singapore, 1983.

W.Sierpinski, Elementary theory of numbers, Warszawa-Amsterdam-New York-Oxford 1987.
Z.l. Borevich. |.R.Shafarevich, Number Theory, Academic Press 1966

H. Davenport, The Higher Arithmetic, Cambridge University Press.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,
Oxford University Press, 1979.
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Introduction to number theory, informations

Requirements to pass the lectures and exercises.

General notes regarding the course:

To pass the course, you need to pass the final exam in the end,
and you need to pass the exercises.

Students must score at least 60 percent on the exam to pass.
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Introduction to number theory, informations

Requirements to pass the lectures and exercises.

General notes regarding the course:

To pass the exercises you need to pass:
homework exercises (which will be put on the webpage in due course)
and two tests.

Minimum passing is 60 percent.
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Introduction to number theory, informations

The maximum number of lessons that a student may

be absent without acceptable documentation justifying the absence is 2.
Class attendance is required of all undergraduates unless the student has
an official excused absence.

Excused absences are granted for one general reason:

Student has a documented personal reason (illness, injury, health condition etc.).

e Ny 1 2T

52 /53



Introduction to number theory, informations

Consultation hours: Monday 13.30 - 14.30

Room 304/14, located on the third floor, building WIEiK

e-mail: mzakarczemny@pk.edu.pl
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