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2.3  The Euler Phi Function

An arithmetic function is a function defined on the positive integers. The
Euler phi function ¢ (m) is the arithmetic function that counts the number
of integers in the set 0,1,2,...,m — 1 that are relatively prime to m. We

have
el) = 1 o6) = 2
P2 = 2 g =6
e3) = 3 e(B) = 4
p(d) = 2 e9) = 6
w(5) = 4, e(l0) = 1
If p is a prime number, then (a,p) =1 fora=1,..., p—1,and ¢(p) = p—1.

If p" is a prime power and 0 < a < p” — 1, then (a,p”) > 1 if and only if a
is a multiple of p. The integral multiples of p in the interval [0, p" — 1] are
the p™~! numbers 0,p, 2p,3p, ..., (p"~' — 1)p, and so

. . _ ) 1
e(p)=p —pl=p (1 — —)-
p
In this section we shall obtain some important properties of the Euler phi
function.
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Theorem 2.6 Let m and n be relatively prime positive integers. For every
integer ¢ there exist unigue integers a and b such that

0<a<n-—1,
0<b<m-—1,
and
c=ma-+nb (mod mn). (2.4)

Moreover, (c,mn) =1 if and only if (a,n) = (b,m) = 1 in the representa-
tion (2.4).
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Proof. If a,, as, by, by are integers such that
may + nb; = mas +nby  (mod mn),

then
ma; = maj +nb; = mas + nby = may (mod n).

Since (m,n) = 1, it follows that
a; =as (mod n),

and so a; = ay. Similarly, b; = by. It follows that the mn Integers ma + nb
are pairwise incongruent modulo mn. Since there are exactly mn distinct
congruence classes modulo mn, the congruence (2.4) has a unique solution
for every integer c.

Let ¢ =ma+nb (mod mn). Since (m,n) = 1, we have

(e, m) = (ma+nb,m) = (nb,m) = (b,m)

and
(e,n) = (ma+nb,n) = (ma,n) = (a,n).

It follows that (¢,mn) = 1 if and only if (¢,m) = (¢,n) = 1 if and only if
(b,m) = (a,n) = 1. This completes the proof. O
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For example, we can represent the congruence classes modulo 6 as linear
tollows:

combinations of 2 and 3 as

o= o
|

W=
I

o
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N O - N O
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240
241
240
241
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A maltiplicative function is an arithmetic function f(m) such that f(mn) =
f(m)f(n) for all pairs of relatively prime positive integers m and n. If
f(m) is multiplicative, then it is easy to prove by induction on k that if
mi, ..., my are pairwise relatively prime positive integers, then f(mq ---my) =

flmy)--- f(mg).
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Theorem 2.7 The Euler phi function is multiplicative. Moreover,

p(m) = mH (l - 1%) .

plm
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Proof. Let (m,n) = 1. There are (mn) congruence classes in the ring
Z /mn'Z that are relatively prime to mn. By Theorem 2.6, every congruence
class modulo mn can be written uniquely in the form ma + nb + mnZ,
where a and b are integers such that 0 < a <n—1and 0 < b < m — 1.
Moreover, the congruence class ma + nb+mnZ is prime to mn if and only
if (b,m) = (a,n) = 1. Since there are @(n) integers a € [0,n — 1] that are
relatively prime to n, and ¢(m) integers b € [0,m — 1] relatively prime
to m, it follows that @(mn) = @(m)e(n), and so the Euler phi function is

multiplicative. If mq, ..., my are pairwise relatively prime positive integers,
then @(m1---mg) = p(ma)---@(mz). In particular, if m = pi*---p;* is
the standard factorization of m, where p;....,p; are distinct primes and
ri,...,r are positive integers, then
k E 1 1
e(m) =] e @) =]]r (1 - .—) =m]] (1 - —) :
i=1 i=1 i P
= = plm

This completes the proof. O
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For example, 7875 = 32537 and

G(T875) = (3%)@(5%)e(7) = (9 — 3)(125 — 25)(7 — 1) = 3600.
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Theorem 2.8 For every positive integer m.,

Z ol(d) = m.

d|m
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Proof. We first consider the case where m = p' is a power of a prime p.
The divisors of p* are 1, p, p pt, and

t
dowld) =D ) =1+ (p—p")=r".
d|pt r=0 r=1

Next we consider the general case where m has the standard factorization

oy — blt2 by
m=py Py Py,

where py, ..., pr are distinct prime numbers and {1, ..., 1, are positive in-
tegers. Every divisor d of m is of the form

71,72 T

d=p'py’ Py

where 0 < r;, <t fori=1,.... k. By Theorem 2.7, ©(d) is multiplicative,
and so
w(d) = (P )e(ps) - - e(p)-
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Therefore,
t th
Soeld) = Y > e
d|m r1=0 =0
t th
= e(pT )e(s*) - elpy)
=0 =0
koot
= JI> et
i=1r;=0
k
- I
i=1
= m
This completes the proof. O
S ——— Ny )
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For example,

and

(1) +9(2) + @(3) + p(4) + ¢(6) + ¢(12)

14142424244
12

@(1) +¢(3) + @(5) + (9) + p(15) + (45)

14+424+44+64+8+24
45.
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2.4 Chinese Remainder Theorem

Theorem 2.9 Let m and n be positive integers. For any integers a and b
there exists an inleger x such that

r=a (modm) (2.5)

and

]
Il

=b (mod n) (2.6)

if and only if
a=b (mod (m,n)).

If = is a solution of congruences (2.5) and (2.6), then the integer y is also
a solution if and only if

z=y (mod [m,n]).
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Proof. If x is a solution of congruence (2.5), then & = a 4+ mu for some
integer u. If z is also a solution of congruence (2.6), then

z=a+mu=>b (modn),

that is,
a+ mu=b+nv

for some integer v. It follows that
a—b=nv—mu=0 (mod (m,n)).

Conversely, if a —b =0 (mod (m,n)), then by Theorem 1.15 there exist
integers u and v such that

a —b=mnv—mu.

Then
r=a+mu="b+nv

is a solution of the two congruences.
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An integer y is another solution of the congruences if and only if
y=a=xz (modm)
and
y=b=z (modn),

that is, if and only if 2y i1s a common multiple of m and n, or, equivalently,
x — y is divisible by the least common multiple [, n]. This completes the
proof. O
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For example, the system of congruences

= 5 (mod 21),
19 (mod 56),

has a solution, since
(56,21) =7

and
19=5 (mod 7).

The integer z is a solution if there exists an integer u such that

z=5+2lu=19 (mod 56),

that is,
2lu =14 (mod 56),
3u=2 (mod 8),
or
u=6 (mod 8).
Then

o =5+ 21lu=>5+ 21(6 + 8v) = 131 + 168v

is a solution of the system of congruences for any integer v, and so the set
of all solutions is the congruence class 131 + 1687Z.
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Theorem 2.10 (Chinese remainder theorem) Letk = 2. Ifay,... ax
are inlegers and myq, . .., my, are parrwise relatively prime posilive integers,

then there exists an integer x such that
x=a; (modm;) foralli=1,..., k.

If z is any solution of this set of congruences, then the integer v is also a
solution if and only if

z=y (modm-- mp).
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Proof. We prove the theorem by induction on k. If & = 2, then [my, m2] =
mimes, and this is a special case of Theorem 2.9.

Let k& = 3, and assume that the statement is true for k — 1 congruences.
Then there exists an integer z such that 2 = a; (mod m;) fori=1,..., k—
1. Since mq, ..., my, are palrwise relatively prime integers, we have

(my - my_q,my) =1,

and so, by the case k = 2, there exists an integer x such that

z = z (modmy---mg_1),
z = ar (modmyg).
Then
x=z=a; (modm;)
fori=1,...,k— 1.

If y is another solution of the system of k congruences, then = — y is
divisible by m; for alli = 1,..., k. Since m;,...,m; are pairwise relatively
prime, it follows that = — v is divisible by my - - - m;. This completes the
proof, O
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For example, the system of congruences

r = 2 (mod 3),
z = 3 (mod5)

r = 5 (mod {)
r = 7 (mod 11)

has a solution, since the moduli are pairwise relatively prime. The solution
to the first two congruences is the congruence class

z=8 (mod 15).
The solution to the first three congruences is the congruence class
z =68 (mod 105).
The solution to the four congruences is the congruence class

z =1118 (mod 1155).
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There is an important application of the Chinese remainder theorem to
the problem of solving diophantine equations of the form

flzy,...,2) =0 (mod m),

where f(xq,...,xy) is a polynomial with integer coefficients in one or sev-

eral variables. This equation is solvable modulo m if there exist integers
ai,...,ar such that

flar,...,ax) =0 (mod m).

The Chinese remainder theorem allows us to reduce the question of the
solvability of this congruence modulo m to the special case of prime power
moduli p”. For simplicity, we consider polynomials in only one variable.
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Theorem 2.11 Let
m=pit--ppF

be the standard factorization of the positive integer m. Let f(x) be a poly-
nomial with integral coefficients. The congruence

flz) =0 (mod m)
is solvable if and only if the congruences
flz)=0 (mod p*)

are solvable for alli=1,..., k.
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Proof. If f() =0 (mod m) has a solution in integers, then there exists
an integer a such that m divides f(a). Since p;* divides m, it follows that
pi* divides f(a), and so the congruences f(x) =0 (mod p!*) are solvable

_ iy e cnlir
=0 (mod p*) are solv-
an integer a; such that

fla;) =0 (mod pl*).
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Since the prime powers pi*,.... Pyt are pairwise relatively prime, the Chi-
nese remainder theorem tells us that there exists an integer a such that

a=a; (modp")
for all i. Then
fla) = f(a;) =0 (mod pi*)
for all 7. Since f(a) is divisible by each of the prime powers p!’, it is also

divisible by their product m, and so f(a) =0 (mod m). This completes
the proof. O
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For example, consider the congruence
fr)=2%-34=0 (mod 495).
Since 495 = 32 . 5. 11, it suffices to solve the congruences
fle)=a2?>—34=2>+2=0 (mod 9),
fle)=2?=-34=2"4+1=0 (mod 5),
and

flz)=a?-34=2>-1=0 (mod 11).

These congruences have solutions
Ff(5)=0 (mod9),
f(2) =0 (mod 5),
and

f()=0 (mod 11).
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By the Chinese remainder theorem, there exists an integer a such that

a = 5 (mod?9),
a = 2 (mod?5),
a 1 (mod 11).

Solving these congruences, we obtain
a =122 (mod 495).
We can check that
f(122) = 122% — 34 = 14,850 = 30 - 495,

and so

f(122) =0 (mod 495).
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2.5 Euler’s Theorem and Fermat’s Theorem

Theorem 2.12 (Euler) Let m be a positive integer, and let a be an inte-
ger relatively prime to m. Then

a?™ =1 (mod m).
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Proof. Let {ry,..., 7o(m)} De a reduced set of residues modulo m. Since
(a,m) = 1, we have (ar;,m) =1 fori =1..... @(m). Consequently, for
every i € {1,..., w(m)} there exists o(i) € {1,..., (m)} such that

ar; =gy (mod m).

Moreover, ar; = ar; (mod m) if and only if ¢ = j. and so ¢ is a permuta-
tion of the set {1,..., o(m)} and {arq,. .., ary(m) } is also a reduced set of
residues modulo m. It follows that

a? ™y Toim) = (ari)(ary)---(arym)) (mod m)
= To()Te(2) " Tal(e(m)) (mod m)

= rirecc Ty (mod m).
Dividing by 7172 - - 7(m), we obtain
a?™ =1 (mod m).

This completes the proof. O
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Theorem 2.13 (Fermat) Let p be a prime number. If the integer a is not
divisible by p, then
a’1=1 (mod p).

Moreover,
a’ =a (mod p)

for every integer a.

Proof. If p is prime and does not divide a, then (a,p) =1, ¢(p) = p—1,
and
a? ' =af®) =1 (mod p)

by Euler’s theorem. Multiplying this congruence by a, we obtain
a? =a (mod p).

If p divides a, then this congruence also holds for a. O
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Let m be a positive integer and let a be an integer that is relatively
prime to m. By Buler’s theorem, o™ = 1 (mod m). The order of a
with respect to the modulus m is the smallest positive integer d such that
a’=1 (mod m). Then 1 < d < ¢(m). We denote the order of @ modulo
m by ord,, (a). We shall prove that ord,,(a) divides p(m) for every integer
a relatively prime to p.

Theorem 2.14 Let m be a positive integer and a an integer relatively
prime to m. If d is the order of a modulo m, then a* = o’ (mod m)
if and only if k = ¢ (mod d). In particular, a™ =1 (mod m) if and only
if d divides n, and so d divides o(m).

L
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Proof. Since a has order d modulo m, we have a? = 1 (mod m). If
k={ (mod d), then k = ¢+ dg, and so

a¥ = aftde = ot (ad)q =a’ (mod m).

Conversely, suppose that «* = af (mod m). By the division algorithm,
there exist integers ¢ and r such that

k—{l=dg+r and 0<r<d-1.

Then

k

. q . R
ab = gftder = ot (ad) a" =a"a”  (mod m).

Since (a*,m) = 1, we can divide this congruence by a* and obtain

a" =1 (mod m).
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< d—1, and d is the order of @ modulo m, it follows that r = 0,
=/ (x 110d d).

Ifa" =1 1% (mod m), then d divides n. In particular, d divides
@(m), since a?™ =1 (mod m) by Euler’s theorem. O

Since 0 < r
and so k
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Theorem 2.15 (Lagrange’s theorem) If G is a finite group and H is
a subgroup of G, then the order of H divides the order of G.

Proof. Let G be a group, written multiplicatively, and let X be a
nonempty subset of G. For every a € G we define the set

aX ={ar:z e X}.

The map f : X — aX defined by f(z) = az is a bijection, and so |X| =
|aX| for all @ € G. If H is a subgroup of G, then aH is called a coset
of H. Let aH and bH he cosets of the subgroup H. If aH NbH # 0,
then there exist =,y € H such that ar = by, or, since H is a subgroup,
b=ary ! =az where 2 =xy~' € H. Then bh =azh < aH forallh € H,
and so bH C aH. By symmetry, aH C bH, and so aH = bH. Therefore,
cosets of a subgroup H are either disjoint or equal. Since every element
of GG belongs to some coset of H (for example, a € aH for all a € G), it
follows that the cosets of H partition G. We denote the set of cosets by
G/H. If G is a finite group, then H and G/H are finite, and

|G| = [H||G/H].

In particular, we see that |H| divides |G|. O
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Let G be a group, written multiplicatively, and let a € G. Let H = {a* :
ke Z}. Then1=a" € H C G. Since a*a’ = a*** for all k, £ € Z, it follows
that H is a subgroup of &. This subgroup is called the cyelic subgroup
generated by a, and written (a). Cyeclic subgroups are abelian.

The group G is cyelic if there exists an element a € G such that G = (a).
In this case, the element a is called a generator of G. For example, the group
(Z/7Z)* is a eyclic group of order 6 generated by 3 + 7Z. The congruence
class 5 + 7Z is another generator of this group.
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If a* = o for all integers k # ¢, then the cyclic subgroup generated by
a is infinite. If there exist integers & and ¢ such that k < ¢ and a* = af,
then a*~* = 1. Let d be the smallest positive integer such that a? = 1.
Then the group elements 1,a,a?,...,a%"" are distinct. Let n € Z. By the
division algorithm, there exist integers g and r such that n = dg + r and
0<r<d-—1. Since

o™ = gt — (a.d)q a =d,
it follows that
(a)={a":neZ}={a":0<r<d—-1},
and the cyelic subgroup generated by a has order d. Moreover, a* = af if
and only if k=¢ (mod d).

Let G be a group, and let a € G. We define the order of a as the cardi-
nality of the eyclie subgroup generated by a.
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Theorem 2.16 Let G be a finite group, and a € G. Then the order of the
element a divides the order of the group G.

Proof. This follows immediately from Theorem 2.15, since the order of
a is the order of the cyclic subgroup that a generates. O
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Let us apply these remarks to the special case when G = (Z/mZ)* is
the group of units in the ring of congruence classes modulo m. Then G is a
finite group of order y(m). Let (a,m) = 1 and let d be the order of a+mZ
in G, that is, the order of the eyelic subgroup generated by a + mZ. By
Theorem 2.16, d divides (m), and so

wim)/d

a?"™ +mZ = (a+mZ)*"™ = ((a +mZ)?) =14 mZ.

Equivalently,
a*™ =1 (mod m).

This is Euler’s theorem.
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Proof. Let S be the set of all integers u such that " € H. If u,v € S,
then a*.a” € H. Since H is a subgroup, it follows that a“a* = a"™* € H
and a”[a.”)_l =a""" € H. Therefore, u+v € S, and S is a subgroup of Z.
By Theorem 1.3, there is a unique nonnegative integer d such that S = dZ,
and so H is the cyclic subgroup generated by a®. Since a™ = 1 € H, we
have m € S, and so d is a positive divisor of m. It follows that H has order
m/d. O
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Theorem 2.18 Let G be a cyelic group of order m, and let a be a generator
of G. For every integer k, the cyclic subgroup generated by a* has order
m/d, where d = (m, k), and (a*) = (a?). In particular, G has eractly p(m)
generators.

Proof. Since d = (k,m), there exist integers = and y such that d =
kz +my. Then

a_d — ak:z.‘+my — (ak):’: {a_m)y — (ak)-r ,

and so a? € (a*) and (a?) C (a*). Since d divides k, there exists an integer
z such that k = d2. Then

o= ()
and so a* € (a?) and (a*) C (a?). Therefore, (a*) = (a?) and o* has
order m/d. In particular, ¢* generates G if and only if d = 1 if and only
if (m,k) = 1, and so G has exactly ¢(m) generators. This completes the
proof. O
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We can now give a group theoretic proof of Theorem 2.8. Let GG be a
cyelic group of order m. For every divisor d of m, the group ¢ has a unique
cyelie subgroup of order d, and this subgroup has exactly ¢(d) generators.
Since every element of G generates a cyelic subgroup, it follows that

m = Z w(d).

d|m

e N

40 / 41



thank you
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