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Pseudoprimes and Carmichael Numbers

Suppose we are given an odd integer n > 3, and we want to determine
whether n is prime or composite. If n is “small,” we can simply divide n
by all odd integers d such that 3 < d < \/n. If some d divides n, then n
is composite; otherwise, n is prime. If n is “big.” however, this method is

time-consuming and impractical.
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Fermat’s theorem can be applied to this problem. By Fermat’s theorem,
if n is an odd prime, then 2"=! = 1 (mod n). Therefore, if n is odd and
2"=1 £ 1 (mod n), then n must be composite. In general, we can choose
any integer b that is relatively prime to n. By Fermat’s theorem, if n is
prime, then 0"~! = 1 (mod n). It follows that if b"~! £ 1 (mod n),
then n must be composite. Thus, for every base b, Fermat’s theorem gives
a primality test, that is, a necessary condition for an integer n to be prime.,
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Suppose we want to know whether n = 851 is prime or composite. We
shall compute 259 (mod 851). An efficient method is to use the 2-adic
representation of 850:

850 = 2+ 2% 426 4 28 4 29,

2
n—
Since 2 (22 ) , we have
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(mod 851),
(mod 851),
(mod 851),
(mod 851),
(mod 851),
(mod 851),
(mod 851)

(mod 851),
(mod 851).
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Then

9850

9292192°92%52°

4-9-604-238-478

160 £ 1

(mod 581),

(mod 851)

(mod 851)
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This test can prove that an integer is composite, but it cannot prove
that an integer is prime. For example, consider the composite number n =
341 =11 - 31, Choosing base b = 2, we have

219=1 (mod 11),

and so »
20 = (217 =1 (mod 11).
Similarly,
2°=1 (mod 31).
and so o
20 = (2°)" =1 (mod 31).
Since 23 — 1 is divisible by both 11 and 31, it is divisible by their product,

that is,
2340 =1 (mod 341).
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A composite number n is called a pseudoprime to the base b if (b,n) = 1
and "L =1 (mod n).
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Can every composite number be proved composite by some primality
test based on Fermat’s theorem? It is a surprising fact that the answer is
“no.” There exist composite numbers n that cannot be proved composite
by any congruence of the form 5"~ (mod n) with (b,n) = 1.
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For example, 561 = 3. 11 17 is composite.
Let b be an integer relatively prime to 561.

Then
¥ =1 (mod 3),
and so ‘
po80 — (52)280 =1 (mod 3).
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Similarly,
=1 (mod 11),
and so 56
p560 _ (blo)" =1 (mod LI).
Finally,
%=1 (mod 17),
and so

p560 _ (516)35 =1 (mod 17).

Since b°%° — 1 is divisible by 3, 11, and 17, it is also divisible by their

product, hence
b =1 (mod 561).

e N YL



This proves that 561 is a pseudoprime to base b for every b such that
(byn) = 1.

A Carmachael number is a positive integer n such that n is composite
but "=t =1 (mod n) for every integer b relatively prime to n. Thus, 561
is a Carmichael number.
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Carmichael conjectured in 1912 that the number of Carmichael numbers
is infinite. Alford, Granville, and Pomerance [1] confirmed this in 1994,
They proved that if C'(x) is the number of Carmichael numbers less than x,
then C'(x) > 2*/7 for all sufficiently large x. Erdds has made the stronger
conjecture that for every ¢ > 0 there exists a number xg(c) such that
C(x) > x'7¢ for all @ > xq(e).
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|
Polynomials and Primitive Roots

Let m be a positive integer greater than 1, and a an integer relatively
prime to m. The order of @ modulo m, denoted by ord,,(a), is the smallest
positive integer d such that «® =1 (mod m). By Theorem 2.14, ord,,(a)
is a divisor of the Euler phi function o(m). The order of a modulo m is
also called the exponent of a modulo m.

e Ve )0



We investigate the least nonnegative residues of the powers of a modulo

m. For example, if m =7 and

=

2
1

2

, then

mod 7),

I d

(
(mod 7
(
(

I d

mod 7

)
)
mod 7),
)
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If m =7 and a = 3, then

and 3 has order 6 modulo 7
modulo 7.

3-5

. The powers of 3 form a reduced residue system

mod 7
mod 7

mod

=1

mod 7

mod 7),

(
(
(
(mod
(
(
(

mod 7),

=1

7)
7)
)
).
7).
)
)
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The integer a is called a primative root modulo m if a has order (m). In
this case, the o(m) integers 1. a,a?,. ... a®™—1 are relatively prime to m
and are pairwise incongruent modulo m. Thus, they form a reduced residue
system modulo m. For example, 3 is a primitive root modulo 7. Similarly,
3 is a primitive root modulo 10, since ¢(10) = 4 and

3% =1 (mod 10),
31 =3 (mod 10),
32 =9 (mod 10),
3 =7 (mod 10),
32 =1 (mod 10).
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Some moduli do not have primitive roots. There is no primitive root
since ¢(8) = 4, but

modulo 8, for example,
(3.1)

2 2=1 (mod 8),

Il
-1

5

32

12

and no integer has order 4 modulo 8.

May 22, 2017

18 / 42



In this section we prove that every prime p has a primitive root.
Next we determine all composite moduli m for which there exist
primitive roots.
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We begin with some remarks about polynomials. Let R be a commutative
ring with identity. A polynomial with coefficients in R is an expression of
the form

J(2) = apma™ + tgp_ 2™ 4 agz + ag,

where ag,aj...., am € R. The element a; is called the coefficient of the
term 2. The degree of the polynomial f(z), denoted by deg(f), is the
greatest integer n such that a,, # 0, and a,, is called the leading coefficient.
If deg(f) = n, we define a; = 0 for i > n. Nonzero constant polynomials
[(x) = ag # 0 have degree 0. The zero polynomial f(x) = 0 has no degree.
A monic polynomial is a polynomial whose leading coefficient is 1.
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We define addition and multiplication of polynomials in the usual way:
If f(x) = Yigaix® and g(x) = 377 bja’, then

max(m,n)

(f+qg)(x)= Z (ag, + by)x"

k=0
and
mmn
ok
fo(z) = Z e’
k=0
where
k
Clp = Z (libj = Zﬂibk—i-
i+i=k i=0
0<i<n
0<jZm
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With this addition and multiplication, the set R[z] of all polynomials with
coefficients in R is a commutative ring. Moreover,

deg(f + g) < max(deg(f), deg(q)).
If f,g € Flz] for some field F, then
deg(fg) = deg(f) + deg(g).

and the leading coefficient of fg is a,,b,.
For every av € R, the evalualion map O, : R[x] — R defined by

Ou(f) = fla) = ana™ 4 an_1a™ 1 + -+ aya + ag
is a ring homomorphism, that is, (f + g)(a) = f(a) + g(a) and (fg)(a) =

fla)g(e). The element « is called a zero or a reot of the polynomial f(x)

i£0,(f) = fla) =0,
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We say that the polynomial d(x) divides the polynomial f(x) if there
exists a polynomial ¢(x) such that f(z) = d(x)g(x).

Theorem 3.1 (Division algorithm for polynomials) Letl F' be a field.
If f(x) and d(z) are polynomials in F[z] and if d(x) # 0, then there exist
unique polt/nomzale q(x) and r(z) such that f(x) = d(z)q(x) + r(x) and
cither v(x) = 0 or the degree of r(x) is strictly smaller than the degree of

d().
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Theorem 3.2 Let f(z) € Flz], f(z) #0, and let No(f) denote the number
of distinct zeras of f(x) in F. Then No(f) does not exceed the degree of
f(x), that is,

No(f) < deg(f).
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Proof. We use the division algorithm for polynomials. Let o € F. Di-
viding f(z) by © — a, we obtain

flz) = (x — a)g(x) + r(x),

where r(z) = 0 or deg(r) < deg(x —«) = 1, that is, () = rq is a constant.
Letting = = o, we see that 79 = f(«), and so

fx) = (x = a)q(x) + fla)

for every e € F. In particular, if « is a zero of f(x), then x — « divides

f(x).
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We prove the theorem by induction on n = deg(f). If n = 0, then f(x)
is a nonzero constant and No(f) = 0. If n = 1, then f(x) = ag + ayx
with ay # 0, and No(f) = 1 since f(x) has the unique zero a = —aj ' ap.
Suppose that n > 2 and the theorem is true for all polynomials of degree
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at most n— 1. If No(f) =0, we are done. If No(f) > 1, let o € F be a zero
of f(xz). Then
flz) = (z —a)g(x),

and
deg(q) =n — 1.

If 7 is a zero of f(z) and 7 # «, then

0= f(0)=(3—a)g(f),

and so (3 is a zero of g(x). Since deg(g) = n — 1, the induction hypothesis
implies that
No(f) <1+ No(q) <1+ deg(q) = n.

This completes the proof. O
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Theorem 3.3 Let G be a finite subgroup of the multiplicative group of a
field. Then G is cyclic.
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Proof. Let |G| = m. By Theorem 2.15, if a € G, then the order of a
is a divisor of m. For every divisor d of m, let ©/(d) denote the number
of elements of G of order d. If ¢(d) # 0, then there exists an element a
of order d, and every element of the cyclic subgroup {(a) generated by a
satisfies a? = 1. By Theorem 3.2, the polynomial f(x) = 24 —1 € F[z] has
at most d zeros, and so every zero of f(x) belongs to the cyclic subgroup
{a). In particular, every element of G of order d must belong to (a). By
Theorem 2.18, a cyclic group of order d has exactly ¢(d) generators, where
©(d) is the Euler phi function. Therefore, ¢)(d) = 0 or «(d) = (d) lor
every divisor d of m. Since everv element of GG has order d for some divisor

d of m, it follows that Z (d) = m.
dlm

By Theorem 2.8,
Z wld) =m,
dlm

and so v (d) = p(d) for every divisor d of m. In particular, ¢(m) = ¢(m) >
1, and so G is a cyclic group of order m. O
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Theorem 3.4 For every prime p, the multiplicative group of the finite field
Z/pZ is cyclic. This group has o(p — 1) generators. Equivalently, for every
prime p, there exist o(p — 1) parrwise incongruent primitive rools modulo
p.

Proof. This follows immediately from Theorem 3.3, since |(Z/pZ)*| =
p—1.0
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The following table lists the primitive roots for the first six primes.

p | @(p—1) | primitive roots
2 1 1
3 1 2
5 2 2,3
7 2 3.5
11 4 2,6,7,8
13 4 2,6,7,11
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Let p be a prime, and let g be a primitive root modulo p. If a is an integer
not divisible by p, then there exists a unique integer & such that

a=g" (mod p)

and
ke {0 1,..., p—2}

This integer k is called the index of a with respect to the primitive root g,
and is denoted by
k =indg(a).
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If k1 and ko are any integers such that ky < ke and

a=g"=g" (modp).

then

g =1

(mod p),
and so
k1 =ho (modp—1).

£ £

Ifa=g¢" (modp)andb=g"® (mod p),thenab= gFgt = ¢**

and so

(mod p),

indg,(ab) = k + ¢ =indy(a) +ind,(b) (mod p—1).

The index map indg is also called the discrete logarithm to the base g
modulo p.
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Ifa=g¢* (modp)andb =g

and so

(mod p). then ab = ¢F¢* = ¢**¢  (mod p).

indg(ab) =k + ¢ =indy(a) +indg(b) (mod p —1).

The index map indg is also called the discrete logarithm to the base g
modulo p.
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For example, 2 is a primitive root modulo 13. Here is a table of inds(a)
fora=1,..., 12:

a | inda(a) || a | ind2(a)
1 0 7 11
2 1 8 3
3 4 9 8
4 2 10 10
5 9 11 7
G 5 12 6
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By Theorem 2.18, if ¢ is a primitive root modulo p, then ¢* is a primitive
root it and only if (k, p—1) = 1. For example, for p = 13 there are (12) = 4
integers & such that 0 < £ < 11 and (k, 12) = 1, namely, k = 1,5,7, 11, and
so the four pairwise incongruent primitive roots modulo 13 are

2! = 2 (mod 13).
25 = 6 (mod 13).
27 = 11 (mod 13),
oL = 7 (mod 13).
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Primitive Roots to Composite Moduli

In the previous section we proved that primitive roots exist for every prime
number. We also observed that primitive roots do not exist for every mod-
ulus. For example, congruence (3.1) shows that there is no primitive root
modulo 8. The goal of this section is to prove that an integer m > 2 has a
primitive root if and only if m = 2,4, p*, or 2p*. where p is an odd prime
and k is a positive integer.
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Theorem 3.5 Let m be a positive integer that is not a power of 2. If mn
has a primitive root, then m = p* or 2pF, where p is an odd prime and k
is a positive integer.
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Proof. Let a and m be integers such that (a,m) = 1 and m > 3. Suppose
that

m = mymsy, Where (my,ms) =1 and my > 3, mq > 3. (3.2)

Then (a,my) = (a,mg) = 1. The Euler phi function ¢(m) is even for m > 3
(Exercise 4 in Section 2.2). Let

. p(m)  @(my)p(ms)
2 2 '
By Euler’s theorem,
aflm) = (mod my),

and so

©(ma)/2
at = (G\P(Tnl))\*’(?n / =1 (mod my).
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Similarly,

‘ w(ma)/2
a = (a“"(mg)) =1 (mod ma).
Since (my.msa) = 1 and m = myms, we have
a® =1 (mod m),

and so the order of a modulo m is strictly smaller than ¢(m). Consequently,
it we can factor m in the form (3.2), then there does not exist a primitive
root modulo m. In particular, if m is divisible by two distinct odd primes,
then m does not have a primitive root. Similarly, if m = 2°p¥, where £ > 2,
then m does not have a primitive root. Therefore, the only moduli m # 2¢
for which primitive roots can exist are of the form m = p¥ or m = 2p¥ for
some odd prime p. O
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To prove the converse of Theorem 3.5, we use the following result about
the exponential increase in the order of an integer modulo prime powers.

Theorem 3.6 Let p be an odd prime, and let a # £1 be an integer not
divisible by p. Let d be the order of a modulo p. Let ko be the largest integer

such that a® = 1 (mod p*®). Then the order of a modulo p* is d for
E=1,.... ko and dpk*ko for k> k.
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thank you
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