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Theorem 3.3 Let G be a finite subgroup of the multiplicative group of a
field. Then G is cyclic.
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Proof. Let |G| = m. By Theorem 2.15, if a € G, then the order of a
is a divisor of m. For every divisor d of m, let ©/(d) denote the number
of elements of G of order d. If ¢(d) # 0, then there exists an element a
of order d, and every element of the cyclic subgroup {(a) generated by a
satisfies a? = 1. By Theorem 3.2, the polynomial f(x) = 24 —1 € F[z] has
at most d zeros, and so every zero of f(x) belongs to the cyclic subgroup
{a). In particular, every element of G of order d must belong to (a). By
Theorem 2.18, a cyclic group of order d has exactly ¢(d) generators, where
©(d) is the Euler phi function. Therefore, ¢)(d) = 0 or «(d) = (d) lor
every divisor d of m. Since everv element of GG has order d for some divisor

d of m, it follows that Z (d) = m.
dlm

By Theorem 2.8,
Z wld) =m,
dlm

and so v (d) = p(d) for every divisor d of m. In particular, ¢(m) = ¢(m) >
1, and so G is a cyclic group of order m. O
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Theorem 3.4 For every prime p, the multiplicative group of the finite field
Z/pZ is cyclic. This group has o(p — 1) generators. Equivalently, for every
prime p, there exist o(p — 1) parrwise incongruent primitive rools modulo
p.

Proof. This follows immediately from Theorem 3.3, since |(Z/pZ)*| =
p—1.0
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The following table lists the primitive roots for the first six primes.

p | @(p—1) | primitive roots
2 1 1
3 1 2
5 2 2,3
7 2 3.5
11 4 2,6,7,8
13 4 2,6,7,11
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Let p be a prime, and let g be a primitive root modulo p. If a is an integer
not divisible by p, then there exists a unique integer & such that

a=g" (mod p)

and
ke {0 1,..., p—2}

This integer k is called the index of a with respect to the primitive root g,
and is denoted by
k =indg(a).
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If k1 and ko are any integers such that ky < ke and

a=g"=g" (modp).

then

g =1

(mod p),
and so
k1 =ho (modp—1).

£ £

Ifa=g¢" (modp)andb=g"® (mod p),thenab= gFgt = ¢**

and so

(mod p),

indg,(ab) = k + ¢ =indy(a) +ind,(b) (mod p—1).

The index map indg is also called the discrete logarithm to the base g
modulo p.
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Ifa=g¢* (modp)andb =g

and so

(mod p). then ab = ¢F¢* = ¢**¢  (mod p).

indg(ab) =k + ¢ =indy(a) +indg(b) (mod p —1).

The index map indg is also called the discrete logarithm to the base g
modulo p.
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For example, 2 is a primitive root modulo 13. Here is a table of inds(a)

fora=1

12:

a | inda(a) || a | ind2(a)
1 0 7 11
2 1 8 3
3 4 9 8
4 2 10 10
5 9 11 7
G 5 12 6

May 29, 2017 9/ 30



By Theorem 2.18, if ¢ is a primitive root modulo p, then ¢* is a primitive
root it and only if (k, p—1) = 1. For example, for p = 13 there are (12) = 4
integers & such that 0 < £ < 11 and (k, 12) = 1, namely, k = 1,5,7, 11, and
so the four pairwise incongruent primitive roots modulo 13 are

2! = 2 (mod 13).
25 = 6 (mod 13).
27 = 11 (mod 13),
oL = 7 (mod 13).
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Primitive Roots to Composite Moduli

In the previous section we proved that primitive roots exist for every prime
number. We also observed that primitive roots do not exist for every mod-
ulus. For example, congruence (3.1) shows that there is no primitive root
modulo 8. The goal of this section is to prove that an integer m > 2 has a
primitive root if and only if m = 2,4, p*, or 2p*. where p is an odd prime
and k is a positive integer.
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Theorem 3.5 Let m be a positive integer that is not a power of 2. If mn
has a primitive root, then m = p* or 2pF, where p is an odd prime and k
is a positive integer.
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Proof. Let a and m be integers such that (a,m) = 1 and m > 3. Suppose
that

m = mymsy, Where (my,ms) =1 and my > 3, mq > 3. (3.2)

Then (a,my) = (a,mg) = 1. The Euler phi function ¢(m) is even for m > 3
(Exercise 4 in Section 2.2). Let

. p(m)  @(my)p(ms)
2 2 '
By Euler’s theorem,
aflm) = (mod my),

and so

©(ma)/2
at = (G\P(Tnl))\*’(?n / =1 (mod my).
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Similarly,

‘ w(ma)/2
a = (a“"(mg)) =1 (mod ma).
Since (my.msa) = 1 and m = myms, we have
a® =1 (mod m),

and so the order of a modulo m is strictly smaller than ¢(m). Consequently,
it we can factor m in the form (3.2), then there does not exist a primitive
root modulo m. In particular, if m is divisible by two distinct odd primes,
then m does not have a primitive root. Similarly, if m = 2°p¥, where £ > 2,
then m does not have a primitive root. Therefore, the only moduli m # 2¢
for which primitive roots can exist are of the form m = p¥ or m = 2p¥ for
some odd prime p. O
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To prove the converse of Theorem 3.5, we use the following result about
the exponential increase in the order of an integer modulo prime powers.

Theorem 3.6 Let p be an odd prime, and let a # £1 be an integer not
divisible by p. Let d be the order of a modulo p. Let ko be the largest integer

such that a® = 1 (mod p*®). Then the order of a modulo p* is d for
E=1,.... ko and dpk*ko for k> k.
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Proof. There exists an integer ug such that
d _ ko ; ) —
a® =1+ p™up and (uo,p) = 1. (3.3)

Let 1 < k < kg, and let e be the order of @ modulo p*. If a® = (mod pF),

then a®* = 1 (mod p), and so d divides e. By (3.3), we have a® = 1
(mod p*), and so e divides d. It follows that e = d.
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Let j > 0. We shall show that there exists an integer u; such that
a® = 1+ pithoy,; and (uj,p) = 1. (3.4)

The proof is by induction on j. The assertion is true for 7 = 0 by (3.3).
Suppose we have (3.4) for some integer 7 > 0. By the binomial theorem,
there exists an integer v; such that

adpj+l _ (1+pj+k‘]u-j)p
P

_ i+1+k P\ i(i+ko) i

= 1+p [)u3+zz(i>p?j “)IL;
i=

— 1+_pj+1+kt)uj +p3+2+k0’tlj

_ 1+pj+1+k[)(tlj+pl-'j)

— 1+pj+1+k“'u3+1,

and the integer u;; = u; 4 pv; is relatively prime to p. Thus, (3.4) holds
for all 5 = 0.
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Let k= ky+1and j =k — kg = 1. Suppose that the order of @ modulo
p*1is dp’~!. Let e; denote the order of @ modulo p*. The congruence

a®* =1 (mod p*)

implies that
a® =1 (mod pF,

and so dp? ! divides e. Since
o = l—pk_luj_l #1 (mod p*),
it follows that dp?~! is a proper divisor of ¢x. On the other hand,

a®?’ =1 +Pkuj =1 (modp"),

and so ey, divides dp’. It follows that the order of @ modulo p* is exactly
er = dp = dp* %0, This completes the proof. O
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Theorem 3.7 Let p be an odd prime. If g is a primitive root modulo p,
then either g or g+ p is a primitive root modulo p* for allk = 2. If g is a

primitive rool modulo p® and g1 € {g, g+ p*} is odd, then g1 is a primitive
root modulo 2p*.
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Theorem 3.6, if ky = 1, then the order of g modulo p* is (p—1)p*~! = ©(p*),
and ¢ is a primitive root modulo p* for all k£ > 1.
If kg = 2, then
"t =1+p

for some integer v. By the binomial theorem,

p—1 = p—1 p—l—i_i
(9+p) =) P ¢

=0

= ¢ '+(p—1)¢"%p (mod p?)

= 1+pv+¢" %’ —¢"?p (mod p°)

= 1—g¢"?p (modp?)
# 1 (mod p?).

Then g + p 1s a primitive root modulo p such that
(9 +p]p_1 =1+ puo and (ug, p) = 1.

Therefore, g + p is a primitive root modulo p* for all k > 1.

e Ve Z0) 0



Next we prove that primitive roots exist for all moduli of the form 2p*. If
g is a primitive root modulo p¥, then g+ p* is also a primitive root modulo
pF. Since p* is odd, it follows that one of the two integers g and g + p* is
odd, and the other is even. Let g; be the odd integer in the set {g, g +p* b
Since (g + p*,p*) = (g,p*) = 1, it follows that (g, 2p*) = 1. The order of
g1 modulo 2p* is not less than ¢(p®), which is the order of g; modulo p*,
and not greater than cp(QpI"). However, since p is an odd prime, we have

P(20%) = ¢(p"),

and so g; has order ©(2p*) modulo 2p*, that is, ¢; is a primitive root
modulo 2pF. This completes the proof. O
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For example, 2 is a primitive root modulo 3. Since 3 is the greatest power
of 3 that divides 22 — 1, it follows that 2 is a primitive root modulo 3% for
all k > 1, and 2 + 3* is a primitive root modulo 2 - 3% for all k > 1.

Finally, we consider primitive roots modulo powers of 2.
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Theorem 3.8 There exists a primitive root modulo m = 2F if and only if
m=2 or4.
Proof. We note that 1 is a primitive root modulo 2, and 3 is a primitive

root modulo 4. We shall prove that if £ = 3, then there is no primitive root
modulo 2%, Since (2%) = 281 it suffices to show that

a7 =1 (mod 2" (3.5)
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for a odd and k& = 3. We do this by induction on k. The case k = 3 is
congruence (3.1). Let k > 3, and suppose that (3.5) is true. Then
agk;2 -1
is divisible by 2*. Since a is odd, it follows that
ok—

a“ 2+1

is even. Theretore,

is divisible by 25%1, and so
a2 =1 (mod 2%+1),

This completes the induction and the proof of theorem. O
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Let k > 3. By Theorem 3.8, there is no primitive root modulo 2F, that
is, there does not exist an odd integer whose order modulo 2% is 2F~1,
However, there do exist odd integers of order 262 modulo 2.
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Theorem 3.9 For every positive integer k,
5 =143.25%2  (mod 2FH).
Proof. The proof is by induction on k. For k = 1 we have
57 =25=1+3.2 (mod 2%).
Similarly, for k = 2 we have
57 —625=1+48 +576=143-2" (mod 2°).
If the theorem holds for & > 1, then there exists an integer u such that
52° = 143 2FF2 okt — 1 4 2FH2(3 4 4y).

Since 2k +4 = k + 5, we have

2
ok+1 kY 2
52— (52 )

(1+ 25723 + 4u))°
= 1+2"73(3 +4u) (mod 2%++4)
143282 (mod 2%,

This completes the proof. O
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Theorem 3.10 If k > 3, then 5 has order 272 modulo 2%. If a = 1
(mod 4), then there exists a unique integer i  {0,1,...,2F72 — 1} such
that

a=5"(mod2%).
Ifa =3 (mod 4), then there exists a unique integeri ¢ {0,1,...,2F2 1}
such that
a= -5 (mod 2F).
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Proof. In the case k = 3, we observe that 5 has order 2 modulo 8, and

-1 or W

59 (mod 8),

—51 (mod 8),

5! (mod 8),

—5%  (mod 8).
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Let k£ > 4. By Theorem 3.9, we have

527 = 1+43.2% (mod 25F2)
= 1 (mod 2F)
and
5277 = 143.2% 1 (mod 28T

= 14+3-2"1 (mod 2%
1 (mod 2%).

Hh

Therefore, 5 has order exactly 2¢=2 modulo 2%, and so the integers 5¢ are
pairwise incongruent modulo 2% for i = 0.1,...,2F"? — 1. Since 5* =
(mod 4) for all 4, and since exactly half, that is, 2872, of the 2871 odd
numbers between 0 and 2 are congruent to 1 modulo 4, it follows that the
congruence

5'=a (mod 2F)
is solvable for every @ = 1 (mod4). If a
(mod 4) and so the congruence

3 (mod4), then —a =1

5 (mod 2%),

—l

or, equivalently,
a=—5" (mod 2¥),

is solvable. This completes the proot. O
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thank you
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