Exercise 5

1. Let m, n, and k be positive integers. Prove that

$$v_p(mn) = v_p(m) + v_p(n)$$
 and $v_p(m^k) = kv_p(m)$.

- Let d and m be nonzero integers. Prove that d divides m if and only if v_p(d) ≤ v_p(m) for all primes p.
- 3. Let $m = \prod_{i=1}^{k} p_i^{r_i}$, where p_1, \ldots, p_k are distinct primes, $k \ge 2$, and $r_i \ge 1$ for $i = 1, \ldots, k$. Let $m_i = m p_i^{-k_i}$ for $i = 1, \ldots, k$. Prove that $(m_1, \ldots, m_k) = 1$.
- 4. Let a, b, and c be positive integers. Prove that (ab, c) = 1 if and only if (a, c) = (b, c) = 1.
- ^{5.} Prove that if 6 divides m, then there exist integers b and c such that m = bc and 6 divides neither b nor c.
- 6. Prove that for any positive integers a and b,

$$[a,b] = \frac{ab}{(a,b)}.$$

- ^{7.} Let a and b be positive integers. Prove that (a, bc) = (a, b)(a, c) for every positive integer c if and only if (a, b) = 1.
- 8. Let m_1, \ldots, m_k be pairwise relatively prime positive integers, and let d divide $m_1 \cdots m_k$. Prove that for each $i = 1, \ldots, k$ there exists a unique divisor d_i of m_i such that $d = d_1 \cdots d_k$.
- 9. Let $n \ge 2$. Prove that the equation $y^n = 2x^n$ has no solution in positive integers.
- ^{10.} Let a and b be positive integers with (a, b) = d. Prove that

$$\left[\frac{a}{d}, \frac{b}{d}\right] = \frac{[a, b]}{d}$$

- 11. Let a_1, \ldots, a_k be positive integers. Prove that $[a_1, \ldots, a_k] = a_1 \cdots a_k$ if and only if the integers a_1, \ldots, a_k are pairwise relatively prime.
- 12. Let a and b be positive integers and p a prime. Prove that if p divides [a, b] and p divides a + b, then p divides (a, b).

13. Let a and b be positive integers such that

a + b = 57 and [a, b] = 680.

Find a and b.

Hint: Show that a and b are relatively prime. Then a(57 - a) = ab = [a, b].

- 14. A positive integer is called *square-free* if it is the product of distinct prime numbers. Prove that every positive integer can be written uniquely as the product of a square and a square-free integer.
- ¹⁵ Prove that the set of all rational numbers of the form a/b, where $a, b \in \mathbb{Z}$ and b is square-free, is an additive subgroup of \mathbb{Q} .
- 16. Let a and n be positive integers. Prove that $a^n 1$ is prime only if a = 2 and n = p is prime. Primes of the form $M_p = 2^p - 1$ are called *Mersenne primes*. Compute the first five Mersenne primes. The largest known primes are Mersenne primes. It is an unsolved problem to determine whether there are infinitely many Mersenne primes. There is a list of all known Mersenne primes in the Notes at the end of this chapter.
- 17. Let k be a positive integer. Prove that if $2^k + 1$ is prime, then $k = 2^n$. The integer

$$F_n = 2^{2^n} + 1$$

is called the *n*th *Fermat number*. Primes of the form $2^{2^n} + 1$ are called *Fermat primes*. Show that F_n is prime for n = 1, 2, 3, 4.

18. Prove that F_5 is divisible by 641, and so F_5 is composite.

It is an unsolved problem to determine whether there are infinitely many Fermat primes. Indeed, we do not know whether F_n is prime for any n > 4.

19. Modify the proof of Theorem 1.14 to prove that there are infinitely many prime numbers whose remainder is 3 when divided by 4.

Hint: Let p_1, p_2, \ldots, p_n be primes of the form 4k + 3, $p_i \neq 3$. Let $N = 4p_1p_2\cdots p_n + 3$. Show that N must be divisible by some prime q of the form 4k + 3.

- 20. Prove that the equation $3x_1 + 5x_2 = b$ has a solution in integers for every integer b, and a solution in nonnegative integers for b = 0, 3, 5, 6 and all $b \ge 8$.
- ²¹. Find all solutions in nonnegative integers x_1 and x_2 of the linear diophantine equation

$$2x_1 + 7x_2 = 53.$$