Exercise 5

1. Let m, n, and k be positive integers. Prove that

$$
v_{p}(m n)=v_{p}(m)+v_{p}(n) \quad \text { and } \quad v_{p}\left(m^{k}\right)=k v_{p}(m)
$$

2. Let d and m be nonzero integers. Prove that d divides m if and only if $v_{p}(d) \leq v_{p}(m)$ for all primes p.
3. Let $m=\prod_{i=1}^{k} p_{i}^{r_{i}}$, where p_{1}, \ldots, p_{k} are distinct primes, $k \geq 2$, and $r_{i} \geq 1$ for $i=1, \ldots, k$. Let $m_{i}=m p_{i}^{-k_{i}}$ for $i=1, \ldots, k$. Prove that $\left(m_{1}, \ldots, m_{k}\right)=1$.
4. Let a, b, and c be positive integers. Prove that $(a b, c)=1$ if and only if $(a, c)=(b, c)=1$.
5. Prove that if 6 divides m, then there exist integers b and c such that $m=b c$ and 6 divides neither b nor c.
6. Prove that for any positive integers a and b,

$$
[a, b]=\frac{a b}{(a, b)}
$$

7. Let a and b be positive integers. Prove that $(a, b c)=(a, b)(a, c)$ for every positive integer c if and only if $(a, b)=1$.
8. Let m_{1}, \ldots, m_{k} be pairwise relatively prime positive integers, and let d divide $m_{1} \cdots m_{k}$. Prove that for each $i=1, \ldots, k$ there exists a unique divisor d_{i} of m_{i} such that $d=d_{1} \cdots d_{k}$.
9. Let $n \geq 2$. Prove that the equation $y^{n}=2 x^{n}$ has no solution in positive integers.
10. Let a and b be positive integers with $(a, b)=d$. Prove that

$$
\left[\frac{a}{d}, \frac{b}{d}\right]=\frac{[a, b]}{d}
$$

11. Let a_{1}, \ldots, a_{k} be positive integers. Prove that $\left[a_{1}, \ldots, a_{k}\right]=a_{1} \cdots a_{k}$ if and only if the integers a_{1}, \ldots, a_{k} are pairwise relatively prime.
12. Let a and b be positive integers and p a prime. Prove that if p divides $[a, b]$ and p divides $a+b$, then p divides (a, b).
13. Let a and b be positive integers such that

$$
a+b=57 \quad \text { and } \quad[a, b]=680
$$

Find a and b.
Hint: Show that a and b are relatively prime. Then $a(57-a)=a b=[a, b]$.
14. A positive integer is called square-free if it is the product of distinct prime numbers. Prove that every positive integer can be written uniquely as the product of a square and a square-free integer.
15. Prove that the set of all rational numbers of the form a / b, where $a, b \in \mathbf{Z}$ and b is square-free, is an additive subgroup of \mathbf{Q}.
16. Let a and n be positive integers. Prove that $a^{n}-1$ is prime only if $a=2$ and $n=p$ is prime. Primes of the form $M_{p}=2^{p}-1$ are called Mersenne primes. Compute the first five Mersenne primes. The largest known primes are Mersenne primes. It is an unsolved problem to determine whether there are infinitely many Mersenne primes. There is a list of all known Mersenne primes in the Notes at the end of this chapter.
17. Let k be a positive integer. Prove that if $2^{k}+1$ is prime, then $k=2^{n}$. The integer

$$
F_{n}=2^{2^{n}}+1
$$

is called the nth Fermat number. Primes of the form $2^{2^{n}}+1$ are called Fermat primes. Show that F_{n} is prime for $n=1,2,3,4$.
18. Prove that F_{5} is divisible by 641 , and so F_{5} is composite.

It is an unsolved problem to determine whether there are infinitely many Fermat primes. Indeed, we do not know whether F_{n} is prime for any $n>4$.
19. Modify the proof of Theorem 1.14 to prove that there are infinitely many prime numbers whose remainder is 3 when divided by 4 .
Hint: Let $p_{1}, p_{2}, \ldots, p_{n}$ be primes of the form $4 k+3, p_{i} \neq 3$. Let $N=4 p_{1} p_{2} \cdots p_{n}+3$. Show that N must be divisible by some prime q of the form $4 k+3$.
20. Prove that the equation $3 x_{1}+5 x_{2}=b$ has a solution in integers for every integer b, and a solution in nonnegative integers for $b=0,3,5,6$ and all $b \geq 8$.
21. Find all solutions in nonnegative integers x_{1} and x_{2} of the linear diophantine equation

$$
2 x_{1}+7 x_{2}=53 .
$$

