Exercises 7

1. Find all solutions of the system of congruences

$$
\begin{aligned}
x & \equiv 4 \quad(\bmod 5) \\
x & \equiv 5 \quad(\bmod 6) .
\end{aligned}
$$

2. Find all solutions of the system of congruences

$$
\begin{aligned}
& x \equiv 5 \quad(\bmod 12), \\
& x \equiv 8 \quad(\bmod 9) .
\end{aligned}
$$

3. Find all solutions of the system of congruences

$$
\begin{array}{lll}
x & \equiv 5 & (\bmod 12), \\
x & \equiv 8 & (\bmod 10) .
\end{array}
$$

4. Find all solutions of the system of congruences

$$
\begin{aligned}
& 2 x \equiv 1 \quad(\bmod 5), \\
& 3 x \equiv 4 \quad(\bmod 7) .
\end{aligned}
$$

5. Find all integers that have a remainder of 1 when divided by 3,5 , and 7 .
6. Find all integers that have a remainder of 2 when divided by 4 and that have a remainder of 3 when divided by 5 .
7. Find all solutions of the congruence

$$
f(x)=5 x^{3}-93 \equiv 0 \quad(\bmod 231)
$$

8. (Bhaskara, sixth century) A basket contains n eggs. If the eggs are removed $2,3,4,5$, or 6 at a time, then the number of eggs that remain in the basket is $1,2,3,4$, or 5 , respectively. If the eggs are removed 7 at a time, then no eggs remain. What is the smallest number n of eggs that could have been in the basket at the start of this procedure?
Hint: The first condition implies that $n \equiv 1 \quad(\bmod 2)$.
9. Let f be a polynomial with integer coefficients. For $m \geq 1$, let $N_{f}(m)$ denote the number of pairwise incongruent solutions of $f(x) \equiv 0$ $(\bmod m)$. Prove that the function $N_{f}(m)$ is multiplicative, that is, $N_{f}\left(m_{1} m_{2}\right)=N_{f}\left(m_{1}\right) N_{f}\left(m_{2}\right)$ if $\left(m_{1}, m_{2}\right)=1$.
10. Let m_{1}, \ldots, m_{k} be pairwise relatively prime positive integers and $m=$ $m_{1} \cdots m_{k}$. Define the map

$$
f:(\mathbf{Z} / m \mathbf{Z})^{\times} \rightarrow\left(\mathbf{Z} / m_{1} \mathbf{Z}\right)^{\times} \times \cdots \times\left(\mathbf{Z} / m_{k} \mathbf{Z}\right)^{\times}
$$

by

$$
f(a+m \mathbf{Z})=\left(a+m_{1} \mathbf{Z}, \ldots, a+m_{k} \mathbf{Z}\right) .
$$

Use the Chinese remainder theorem to show directly that this map is one-to-one and onto.

