EXERCISE 4

- 1. Compute the simple continued fraction $\langle 2,1,2,1,1,4\rangle$ to 4 decimal places, and compare this number to e.
- 2. Prove that

$$\langle a_0, a_1, \dots, a_N \rangle = a_0 + \frac{1}{\langle a_1, \dots, a_N \rangle}$$

3. Let $N \geq 1$. Prove that

$$\langle a_0, a_1, \dots, a_{N-2}, a_{N-1}, 1 \rangle = \langle a_0, a_1, \dots, a_{N-2}, a_{N-1} + 1 \rangle.$$

4. Let x = ⟨a₀, a₁,...,a_N⟩ be a finite simple continued fraction whose partial quotients a_i are integers, with N ≥ 1 and a_N ≥ 2. Let [x] denote the integer part of x and {x} the fractional part of x. Prove that

$$[x] = a_0$$

and

$$\{x\} = \frac{1}{\langle a_1, \dots, a_N \rangle}.$$

5. Let $\frac{a}{b}$ be a rational number that is not an integer. Prove that there exist unique integers a_0, a_1, \ldots, a_N such that $a_i \geq 1$ for $i=1,\ldots,N-1,$ $a_N \geq 2$, and

$$\frac{a}{b} = \langle a_0, a_1, \dots, a_{N-1}, a_N \rangle.$$

Hint: By Exercise 7, if

$$x = \langle a_0, a_1, \dots, a_N \rangle = \langle b_0, b_1, \dots, b_M \rangle$$

with $a_i, b_j \in \mathbf{Z}$ and $a_N, b_M \geq 2$, then $a_0 = [x] = b_0$.

6. Prove that

$$\langle a_0, a_1, \dots, a_N, a_{N+1} \rangle = \langle a_0, a_1, \dots, a_N + \frac{1}{a_{N+1}} \rangle.$$

28.1

 7 . Let $\langle a_{0}, a_{1}, \ldots, a_{N} \rangle$ be a finite simple continued fraction. Define

$$p_0=a_0,$$

$$p_1 = a_1 a_0 + 1,$$

and

$$p_n = a_n p_{n-1} + p_{n-2}$$
 for $n = 2, \dots, N$.

Define

$$q_0 = 1$$
,

$$q_1 = a_1,$$

and

$$q_n = a_n q_{n-1} + q_{n-2}$$
 for $n = 2, ..., N$.

Prove that

$$\langle a_0, a_1, \dots, a_n \rangle = \frac{p_n}{q_n}$$

for $n=0,1,\ldots,N$. The continued fraction $\langle a_0,a_1,\ldots,a_n\rangle$ is called the nth convergent of the continued fraction $\langle a_0,a_1,\ldots,a_N\rangle$.

- 8 . Compute the convergents p_n/q_n of the simple continued fraction $\langle 1,2,2,2,2,2 \rangle.$ Compute p_6/q_6 to 5 decimal places, and compare this number to $\sqrt{2}.$
- 9. Let $\langle a_0,a_1,\dots,a_N\rangle$ be a finite simple continued fraction, and let p_n and q_n be the numbers defined in Exercise 10. Prove that

$$p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1}$$

and for $n=1,\ldots,N.$ Prove that if $a_i\in {\bf Z}$ for $i=0,1,\ldots,N,$ then $(p_n,q_n)=1$ for $n=0,1,\ldots,N.$

10. We define a sequence of integers as follows:

$$\begin{array}{rcl} f_0 & = & 0, \\ f_1 & = & 1, \\ f_n & = & f_{n-1} + f_{n-2} & \quad \text{for } n \geq 2. \end{array}$$

The integer f_n is called the nth Fibonacci number. Compute the Fibonacci numbers f_n for $n=2,3,\ldots,12$. Prove that $(f_n,f_{n+1})=1$ for all nonnegative integers n.

11. Compute the convergents p_n/q_n of the simple continued fraction $\langle 1,1,1,1,1,1,1 \rangle$. Observe that

$$\frac{p_n}{q_n} = \frac{f_{n+1}}{f_n}$$

for $n = 0, 1, \dots, 6$.

12. Prove that

$$f_{n+1}f_{n-1} - f_n^2 = (-1)^n$$

for all positive integers n.

- 13. Compute the standard factorization of 15!.
- 14. Prove that n, n+2, n+4 are all primes if and only if n=3.
- 15 . Prove that n, n+4, n+8 are all primes if and only if n=3.
- 16. Let $n \geq 2$. Prove that (n+1)!+k is composite for $k=2,\dots,n+1$. This shows that there exist arbitrarily long intervals of composite numbers.
- 17. Prove that $n^5 n$ is divisible by 30 for every integer n.
- 18. Find all primes p such that 29p + 1 is a square.
- 19. The prime numbers p and q are called $twin\ primes$ if |p-q|=2. Let p and q be primes. Prove that pq+1 is a square if and only if p and q are twin primes.
- 20. Prove that if p and q are twin primes greater than 3, then p+q is divisible by 12.